Derivative of e^(1/x) with Chain Rule | Calculus 1 Exercises

preview_player
Показать описание
We differentiate e^1/x using the chain rule. The outside function f(x) is f(x) = e^x, and the inside function g(x) is g(x)=1/x. Then, f(g(x)) = e^(1/x), so we see we've identified the outside and inside functions correctly. Applying the chain rule, we have the derivative of f(g(x)) is f'(g(x))*g'(x) = e(1/x)*(-x^(-2)). #calculus1 #apcalculus

◉Textbooks I Like◉

★DONATE★

Thanks to Loke Tan, Matt Venia, Micheline, Doug Walker, Odd Hultberg, Marc, Roslyn Goddard, Shlome Ashkenazi, Barbora Sharrock, Mohamad Nossier, Rolf Waefler, Shadow Master, and James Mead for their generous support on Patreon!

Outro music is mine. You cannot find it anywhere, for now.

Follow Wrath of Math on...

Рекомендации по теме
Комментарии
Автор

Thank you for another great video. I'm not sure if this would interest you, but I am not aware of any very good treatments of the Leibniz (Feynman) differentiation under the integral sign. I realize it is a bit outside the scope of the lessons you are offering now, but I believe, given your clear, thorough, and direct style that you would do an excellent job, and simply mentioning Feynman seems to draw a lot of traffic!

MikeMagTech
Автор

Could you please solve the equation, x^x=e

shazullahyusufzai