filmov
tv
Quantum interfaces based on trapped ions | Tracy Northup (University of Innsbruck)
Показать описание
Quantum interfaces based on trapped ions | Tracy Northup (University of Innsbruck)
Entanglement-based quantum networks hold out the promise of new capabilities for secure communication, distributed quantum computing, and interconnected quantum sensors. However, only a handful of elementary quantum networks have been realized to date. I will present results from our prototype network, in which two calcium ions are entangled with one another over a distance of 230 m, via a 520 m optical fiber channel linking two buildings. The ion-ion entanglement is based on ion-photon entanglement mediated by coherent Raman processes in optical cavities. I will discuss the advantages of trapped ions for quantum networks and the role that cavities can play as quantum interfaces between light and matter at network nodes. After examining the key metrics for remote entanglement, we will consider the necessary steps to extend this work to long-distance networks of entangled quantum processors.
===
The MCQST Colloquium Series features interdisciplinary talks given by visiting international speakers. The monthly colloquium covers topics spanning all MCQST research units and is broadcasted live via Zoom for audiences worldwide. The main goal of the series is to create the framework for idea exchange, to strengthen links with QST leading groups worldwide, as well as to act as an integral part of the local educational environment.
===
Discover MCQST
Entanglement-based quantum networks hold out the promise of new capabilities for secure communication, distributed quantum computing, and interconnected quantum sensors. However, only a handful of elementary quantum networks have been realized to date. I will present results from our prototype network, in which two calcium ions are entangled with one another over a distance of 230 m, via a 520 m optical fiber channel linking two buildings. The ion-ion entanglement is based on ion-photon entanglement mediated by coherent Raman processes in optical cavities. I will discuss the advantages of trapped ions for quantum networks and the role that cavities can play as quantum interfaces between light and matter at network nodes. After examining the key metrics for remote entanglement, we will consider the necessary steps to extend this work to long-distance networks of entangled quantum processors.
===
The MCQST Colloquium Series features interdisciplinary talks given by visiting international speakers. The monthly colloquium covers topics spanning all MCQST research units and is broadcasted live via Zoom for audiences worldwide. The main goal of the series is to create the framework for idea exchange, to strengthen links with QST leading groups worldwide, as well as to act as an integral part of the local educational environment.
===
Discover MCQST