filmov
tv
Web Scraping Databases with Mechanical Soup and SQlite

Показать описание
Hi Everyone! In this step by step tutorial, we will extract a huge table of data from the internet and store it inside an SQLite database!
To keep things simple I've chosen a Wikipedia table, but I highly encourage you to apply the same principles on data that updates a bit more frequently (for example weather forecasts) 😃
⭐clone complete tutorial code⭐
⏰ TIMESTAMPS ⏰
***************************************
00:00 - intro
00:34 - imports and installs
01:42 - web scraping with mechanical soup
02:20 - select HTML table elements
03:47 - extract element attributes
06:11 - find the index value of a list item
07:13 - extract multiple columns of table data
09:44 - organize extracted columns
12:44 - enumerate function
14:02 - dictionary to data frame
14:53 - create SQLite database
15:36 - create SQLite table
16:35 - insert Pandas data frame into SQlite table
17:26 - save data permanently inside database file
18:49 - thanks for watching!
💻 CODE AND IMPORTANT LINKS 💻
***************************************
⭐ URL used in the tutorial:
⭐ complete code repository on Github:
⭐install SQLite on Linux:
sudo apt install sqlite3
⭐install SQLite on Windows:
Download the Precompiled Binaries for Windows zip file from SQLite docs:
⭐install SQLite on MAC or Anaconda:
no need to install - you already have it! 😁
⭐ code used in the tutorial:
column_names = ["Founder",
"Maintainer",
"Initial_Release_Year",
"Current_Stable_Version",
"Security_Updates",
"Release_Date",
"System_Distribution_Commitment",
"Forked_From",
"Target_Audience",
"Cost",
"Status"]
📽️ RELATED TUTORIALS📽️
***************************************
🌞 Much Better HTML table Web Scraping with Pandas:
🌞 SQLite Databases for Beginners:
🌞 Web Scraping Images with Mechanical Soup:
🌞 Web Scraping Text with Beautiful Soup:
To keep things simple I've chosen a Wikipedia table, but I highly encourage you to apply the same principles on data that updates a bit more frequently (for example weather forecasts) 😃
⭐clone complete tutorial code⭐
⏰ TIMESTAMPS ⏰
***************************************
00:00 - intro
00:34 - imports and installs
01:42 - web scraping with mechanical soup
02:20 - select HTML table elements
03:47 - extract element attributes
06:11 - find the index value of a list item
07:13 - extract multiple columns of table data
09:44 - organize extracted columns
12:44 - enumerate function
14:02 - dictionary to data frame
14:53 - create SQLite database
15:36 - create SQLite table
16:35 - insert Pandas data frame into SQlite table
17:26 - save data permanently inside database file
18:49 - thanks for watching!
💻 CODE AND IMPORTANT LINKS 💻
***************************************
⭐ URL used in the tutorial:
⭐ complete code repository on Github:
⭐install SQLite on Linux:
sudo apt install sqlite3
⭐install SQLite on Windows:
Download the Precompiled Binaries for Windows zip file from SQLite docs:
⭐install SQLite on MAC or Anaconda:
no need to install - you already have it! 😁
⭐ code used in the tutorial:
column_names = ["Founder",
"Maintainer",
"Initial_Release_Year",
"Current_Stable_Version",
"Security_Updates",
"Release_Date",
"System_Distribution_Commitment",
"Forked_From",
"Target_Audience",
"Cost",
"Status"]
📽️ RELATED TUTORIALS📽️
***************************************
🌞 Much Better HTML table Web Scraping with Pandas:
🌞 SQLite Databases for Beginners:
🌞 Web Scraping Images with Mechanical Soup:
🌞 Web Scraping Text with Beautiful Soup:
Комментарии