filmov
tv
How to Build an LLM from Scratch | An Overview
Показать описание
This is the 6th video in a series on using large language models (LLMs) in practice. Here, I review key aspects of developing a foundation LLM based on the development of models such as GPT-3, Llama, Falcon, and beyond.
More Resources:
[4] arXiv:2005.14165 [cs.CL]
[6] arXiv:2101.00027 [cs.CL]
[8] arXiv:2303.18223 [cs.CL]
[9] arXiv:2112.11446 [cs.CL]
[10] arXiv:1508.07909 [cs.CL]
[13] arXiv:1706.03762 [cs.CL]
[16] arXiv:1810.04805 [cs.CL]
[17] arXiv:1910.13461 [cs.CL]
[18] arXiv:1603.05027 [cs.CV]
[19] arXiv:1607.06450 [stat.ML]
[20] arXiv:1803.02155 [cs.CL]
[21] arXiv:2203.15556 [cs.CL]
[26] arXiv:2001.08361 [cs.LG]
[27] arXiv:1803.05457 [cs.AI]
[28] arXiv:1905.07830 [cs.CL]
[29] arXiv:2009.03300 [cs.CY]
[30] arXiv:2109.07958 [cs.CL]
--
Socials
The Data Entrepreneurs
Support ❤️
Intro - 0:00
How much does it cost? - 1:30
4 Key Steps - 3:55
Step 1: Data Curation - 4:19
1.1: Data Sources - 5:31
1.2: Data Diversity - 7:45
1.3: Data Preparation - 9:06
Step 2: Model Architecture (Transformers) - 13:17
2.1: 3 Types of Transformers - 15:13
2.2: Other Design Choices - 18:27
2.3: How big do I make it? - 22:45
Step 3: Training at Scale - 24:20
3.1: Training Stability - 26:52
3.2: Hyperparameters - 28:06
Step 4: Evaluation - 29:14
4.1: Multiple-choice Tasks - 30:22
4.2: Open-ended Tasks - 32:59
What's next? - 34:31
Комментарии