filmov
tv
Evaluate the following `int_(pi//6)^(pi//3)(root3(sinx))/(root3(sinx)+root3(cosx))dx`
Показать описание
Evaluate the following : int_(pi//6)^(pi//3)(root3(sinx))/(root3(sinx)+root3(cosx))dx`
Doubtnut
Рекомендации по теме
0:04:56
Evaluate the following `int_(pi//6)^(pi//3)(root3(sinx))/(root3(sinx)+root3(cosx))dx`
0:02:33
IIT JEE INTEGRALS Evaluate: `int_(pi/6)^(pi/3)(sqrt((sinx))dx)/(sqrt((sinx))+sqrt((cosx)))`
0:04:25
Evaluate the definite integrals `int_(pi/6)^(pi/3)(sinx+cosx)/(sqrt(sin2x))dx`...
0:00:11
IIT Bombay CSE 😍 #shorts #iit #iitbombay
0:04:42
For what value of k is the following function continuous at `x= -pi/6`? `f(x) ={ (sqrt3 sinx+co...
0:04:02
By using properties of definite integrals, evaluate \[ \int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\sin...
0:03:53
Evaluate: `int(dx)/(sinx+sqrt(3)cosx)`
0:00:37
When mathematicians get bored (ep1)
0:00:35
How REAL Men Integrate Functions
0:04:09
Evaluate, `underset(xto(pi//6))\'lim\'(sqrt(3)sinx-cosx)/(pi-pi/6)`
0:00:24
🤣Modi ji ne to math ki esi taisi kar diye🤣🙆🏻♂️ #shorts #youtubeshorts #viral
0:00:12
IIT Bombay Lecture Hall | IIT Bombay Motivation | #shorts #ytshorts #iit
0:00:50
5 simple unsolvable equations
0:03:13
`I_(1) = int_(pi/6)^(pi/3) (dx)/(1+sqrt(tanx))` and `I_(2) = (sqrt(sinx)dx)
0:04:08
IIT JEE INTEGRALS `L e tI_1=int_(pi/6)^(pi/3)(sinx)/x dx ,I_2=int_(pi/6)^(pi/3)('sin'(sinx...
0:00:29
IIT Hostel Life | Padhne Wale BARISH mein bhi padh lete 😂 #iitdelhi #iit #iitbombay
0:00:47
😁 Playing 🐍Snake🐍 game on calculator 😜 [official video] #shorts #viral #casio
0:02:31
27. Evaluate cos (π/3 - π/6)
0:00:50
Quadratic Equations IIT Questions No 11 ( X Class)
0:00:21
Solve | Sin π/6 | using calculator (Casio fx-991MS)
0:00:20
Before JEE vs After JEE 😍 | My Transformation💔 | IIT Motivation|Jee 2023 #transformation #iit #viral...
0:00:43
when calculus students use trig identities too early
0:00:36
11th me mene Ye galtiyan ki thi 🥺 | Ft. NEET Topper #pw #shorts
0:09:03
integral of sinx/[sin(x+pi/6)sin(x-pi/6)] #Integral #integration #derivatives #trigonometry #limits