filmov
tv
Multiple imputation in Stata®: Logistic regression
Показать описание
Learn how to use Stata's *mi* suite of commands to handle missing data. This tutorial covers how to impute a single binary variable with logistic-regression imputation using the *mi impute logit* command.
Copyright 2011-2019 StataCorp LLC. All rights reserved.
Copyright 2011-2019 StataCorp LLC. All rights reserved.
Multiple imputation in Stata®: Logistic regression
Multiple imputation in Stata®: Linear regression
Handling Missing Data in Stata
Handling missing values in Stata using Multiple imputation in Panel Data#Part2_2023
Multiple imputation in Stata®: Predictive mean matching
Stata | Missing Values | How to find them and how to treat missing values
Data analyst portfolio project 3|Changes after multiple imputation in STATA|Part 3
Workflow for multiple imputation analysis
Dealing With Missing Data - Multiple Imputation
Multiple imputation
Data analyst portfolio Project 1| Handling Missing values|Multiple imputations(mi) using STATA
Multinomial logistic regression analysis in STATA || BDHS data
R: Regression With Multiple Imputation (missing data handling)
Logistic regression in Stata®, part 3: Factor variables
Multiple Imputation and Checking Regression Assumptions - What Data Should We Use?
Ipolate Missing Values in Multiple Variables using Loops in STATA
Multiple Imputation by Chained Equations (MICE)
Missing value - Multiple imputation in Regression
Multilevel binary logistic regression using Stata drop-down menus March 2020)
Logistic regression in Stata®, part 1: Binary predictors
2. Stata: How to handle missing data (1)
Data analyst portfolio Project 2| Required imputations|Handling missing values in STATA|2022 #part2
Lab 6 (Part 2) Multiple Imputation in Complex Survey Data Analysis: Stepwise Logistic regression
Karla Loss & Wilson Fandino - Missing Data Analysis in Stata
Комментарии