filmov
tv
Lecture 6: Gauge-equivariant Mesh CNN - Pim de Haan

Показать описание
Video recording of the First Italian School on Geometric Deep Learning held in Pescara in July 2022.
Lecture 6: Gauge-equivariant Mesh CNN - Pim de Haan
CSC2547 Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
Real-time CNNs to understand shift-equivariance, shift-variance, linearity and non-linearity
AMMI Course 'Geometric Deep Learning' - Lecture 10 (Gauges) - Taco Cohen
toy equivariant neural network visualised
Scalars are Universal: Gauge-equivariant Machine Learning, Structured Like Classical Physics
A New Perspective on Building Efficient and Expressive 3D Equivariant Graph Neural Networks
RIMeshGNN: A Rotation-Invariant Graph Neural Network for Mesh Classification
Group Equivariant Deep Learning - Lecture 3.7: Gauge equivariant graph NNs
Group Equivariant Deep Learning - Lecture 3.2: Equivariant message passing as non-linear convolution
Yi Zhou: Fully Convolutional Mesh Autoencoder Using Spatially Efficient Varying Kernels
AMMI 2022 Course 'Geometric Deep Learning' - Lecture 10 (Gauges) - Taco Cohen
Lecture 5: Equivariant CNNs II (Riemannian manifolds) - Maurice Weiler
Learning Equivariant and Hybrid Message Passing on Graphs | Max Welling
Training A Convolutional Neural Network to Output a Blum MedialAxis Skeleton - An Overview
110 Zhang HengKai-Mesh R CNN++ for 3D Mesh Generation From Single to Multiple Views
Group Equivariant Deep Learning - Lecture 1.5: A Brief History of G-CNNs
Pattern Recognition Symposium PRS Winter 20/21 - Pim de Haan - Natural Graph Networks
Maurice Weiler - Equivariant and Coordinate Independent Convolutional Networks
Equivariant RL
Lessons from Physics for Deep Learning
Lecture 4: Equivariant CNNs I (Euclidean Spaces) - Maurice Weiler
AMMI Course 'Geometric Deep Learning' - Lecture 7 (Grids) - Joan Bruna
Petar Veličkovć - Geometric Deep Learning: Grids, Graphs, Groups, Geodesics and Gauges
Комментарии