filmov
tv
Все публикации
1:26:00
Lecture 6: Gauge-equivariant Mesh CNN - Pim de Haan
1:28:35
Lecture 2: Topological Message Passing - Cristian Bodnar
1:28:14
Lecture 8: Curvature & Oversquashing in GNNs - Francesco Di Giovanni
1:28:03
Lecture 7: From Equivariance to Naturality - Pim de Haan
0:42:07
Prerequisites III: Manifolds & Fiber Bundles - Maurice Weiler
1:30:03
Lecture 10: What's Next? - Michael Bronstein
1:34:14
Lecture 1: A Brief History of Geometric Deep Learning - Michael Bronstein
1:10:50
Prerequisites I: Groups, Representations & Equivariance - Maurice Weiler
1:31:51
Lecture 4: Equivariant CNNs I (Euclidean Spaces) - Maurice Weiler
0:22:57
Prerequisites II: Topology - Cristian Bodnar
1:27:20
Lecture 5: Equivariant CNNs II (Riemannian manifolds) - Maurice Weiler
1:28:36
Lecture 3: Sheaf Neural Networks - Cristian Bodnar
1:34:42
Lecture 9: GNNs as Dynamic Systems - Francesco Di Giovanni
0:21:10
Prerequisites IV: Category Theory - Pim de Haan
1:00:24
AMMI 2022 Course 'Geometric Deep Learning' - Seminar 2 (Subgraph GNNs) - Fabrizio Frasca
1:01:37
AMMI 2022 Course 'Geometric Deep Learning' - Lecture 5 (Graphs & Sets) - Petar Veličković
0:46:54
AMMI 2022 Course 'Geometric Deep Learning' - Lecture 10 (Gauges) - Taco Cohen
1:05:21
AMMI 2022 Course 'Geometric Deep Learning' - Lecture 7 (Grids) - Joan Bruna
1:12:39
AMMI 2022 Course 'Geometric Deep Learning' - Seminar 1 (Physics-based GNNs) - Francesco Di Giovanni
0:56:48
AMMI 2022 Course 'Geometric Deep Learning' - Lecture 3 (Geometric Priors I) - Taco Cohen
1:19:40
AMMI 2022 Course 'Geometric Deep Learning' - Lecture 2 (Learning in High Dimensions) - Joan Bruna
1:11:00
AMMI 2022 Course 'Geometric Deep Learning' - Lecture 12 (Applications & Trends) - Michael Bronstein
1:15:33
AMMI 2022 Course 'Geometric Deep Learning' - Lecture 11 (Beyond Groups) - Petar Veličković
1:11:51
AMMI 2022 Course 'Geometric Deep Learning' - Lecture 8 (Groups & Homogeneous spaces) - Taco Cohen
Вперёд