Все публикации

Lecture 6: Gauge-equivariant Mesh CNN - Pim de Haan

Lecture 2: Topological Message Passing - Cristian Bodnar

Lecture 8: Curvature & Oversquashing in GNNs - Francesco Di Giovanni

Lecture 7: From Equivariance to Naturality - Pim de Haan

Prerequisites III: Manifolds & Fiber Bundles - Maurice Weiler

Lecture 10: What's Next? - Michael Bronstein

Lecture 1: A Brief History of Geometric Deep Learning - Michael Bronstein

Prerequisites I: Groups, Representations & Equivariance - Maurice Weiler

Lecture 4: Equivariant CNNs I (Euclidean Spaces) - Maurice Weiler

Prerequisites II: Topology - Cristian Bodnar

Lecture 5: Equivariant CNNs II (Riemannian manifolds) - Maurice Weiler

Lecture 3: Sheaf Neural Networks - Cristian Bodnar

Lecture 9: GNNs as Dynamic Systems - Francesco Di Giovanni

Prerequisites IV: Category Theory - Pim de Haan

AMMI 2022 Course 'Geometric Deep Learning' - Seminar 2 (Subgraph GNNs) - Fabrizio Frasca

AMMI 2022 Course 'Geometric Deep Learning' - Lecture 5 (Graphs & Sets) - Petar Veličković

AMMI 2022 Course 'Geometric Deep Learning' - Lecture 10 (Gauges) - Taco Cohen

AMMI 2022 Course 'Geometric Deep Learning' - Lecture 7 (Grids) - Joan Bruna

AMMI 2022 Course 'Geometric Deep Learning' - Seminar 1 (Physics-based GNNs) - Francesco Di Giovanni

AMMI 2022 Course 'Geometric Deep Learning' - Lecture 3 (Geometric Priors I) - Taco Cohen

AMMI 2022 Course 'Geometric Deep Learning' - Lecture 2 (Learning in High Dimensions) - Joan Bruna

AMMI 2022 Course 'Geometric Deep Learning' - Lecture 12 (Applications & Trends) - Michael Bronstein

AMMI 2022 Course 'Geometric Deep Learning' - Lecture 11 (Beyond Groups) - Petar Veličković

AMMI 2022 Course 'Geometric Deep Learning' - Lecture 8 (Groups & Homogeneous spaces) - Taco Cohen