Math Olympiad Question | A Nice Algebra Problem | What Is The Value Of 'X' In This Equation?

preview_player
Показать описание
Hello 👩‍❤️‍👨👩‍❤️‍👨👩‍❤️‍👨

How Are You Today👍👍👍

If you like this video about
How To Solve This Nice Math Olympiad Algebra Problem,

Please Like And Subscribe To My Channel 🙏🙏🙏

#matholympiad #algebra #olympiadmathematics #mathsfocus #statistics #maths #MathOlympiadPrep #AlgebraSolutions #ExponentialFunctions #MathForKids #AlgebraMadeEasy #MathOlympiadQuestions #ExponentialEquations #MathTutoring #MathPractice #AdvancedMath #MathsFocus #MathOlympiad #Algebra #ExponentialProblems #MathChallenge #MathTips #MathTricks #MathCompetition #LearnMath #MathSkills #MathOlympiadPrep #AlgebraSolutions #ExponentialFunctions #MathForKids #AlgebraMadeEasy #MathOlympiadQuestions #ExponentialEquations #MathTutoring #MathPractice #advancedmaths

Thank You

Рекомендации по теме
Комментарии
Автор

x^3 = 6^3

Let a = x, and b = 6
x^3 = 6^3
=> a^3 = b^3
=> a^3 - b^3 = b^3 - b^3
=> a^3 - b^3 = 0
=> (a - b)(a^2 + a * b + b^2) = 0
=> (a - b)(a^2 + b * a + b^2) = 0

Suppose a - b = 0
Remember, a = x, and b = 6
a - b = 0
=> x - 6 = 0
=> x - 6 + 6 = 0 + 6
=> x = 6

x1 = 6

Suppose a^2 + b * a + b^2 = 0
1 * a^2 + b * a + b^2 = 0
a = (-b +/- sqrt[b^2 - 4 * 1 * b^2]) / (2 * 1)
a = (-b +/- sqrt[b^2 * 1 - b^2 * 4]) / (2)
a = (-b +/- sqrt[b^2 * (1 - 4)]) / 2
a = (-b +/- sqrt[b^2 * (-3)]) / 2
a = (-b +/- sqrt[b^2 * 3 * (-1)]) / 2
a = (-b +/- sqrt[b^2] * sqrt[3] * sqrt[-1]) / 2
a = (-b +/- b * sqrt[3] * i) / 2
a = b * (-1 +/- 1 * sqrt[3] * i) / 2
a = b * (-1 +/- sqrt[3] * i) / 2

Remember, a = x, and b = 6
a = b * (-1 +/- sqrt[3] * i) / 2
=> x = 6 * (-1 +/- sqrt[3] * i) / 2
=> x = ([1/2] * 6) * (-1 +/- sqrt[3] * i)
=> x = 3 * (-1 +/- sqrt[3] * i)
x = 3 * (-1 + sqrt[3] * i), or x = 3 * (-1 - sqrt[3] * i)
x = -3 * (1 - sqrt[3] * i), or x = -3 * (1 + sqrt[3] * i)

x2 = -3 * (1 - sqrt[3] * i)
x3 = -3 * (1 + sqrt[3] * i)

{x1, x2, x3} = {6, -3 * (1 - sqrt[3] * i), -3 * (1 + sqrt[3] * i)}

stpat