filmov
tv
Suppose \( a, b, c \) are in A.P. and \( \mathrm{a}^{2}, \mathrm{~b}^{2}, \mathrm{c}^{2} \) are ...
![preview_player](https://i.ytimg.com/vi/5EErRPpQDEc/maxresdefault.jpg)
Показать описание
Suppose \( a, b, c \) are in A.P. and \( \mathrm{a}^{2}, \mathrm{~b}^{2}, \mathrm{c}^{2} \) are in G.P. If \( \mathrm{a}\mathrm{b}\mathrm{c} \) and \( \mathrm{a}+\mathrm{b}+\mathrm{c}=\frac{3}{2} \), then the value of \( \mathrm{a} \) is
(A) \( \frac{1}{2 \sqrt{2}} \)
(B) \( \frac{1}{2 \sqrt{3}} \)
(C) \( \frac{1}{2}-\frac{1}{\sqrt{3}} \)
(D) \( \frac{1}{2}-\frac{1}{\sqrt{2}} \)
\( \mathrm{P} \)
(A) \( \frac{1}{2 \sqrt{2}} \)
(B) \( \frac{1}{2 \sqrt{3}} \)
(C) \( \frac{1}{2}-\frac{1}{\sqrt{3}} \)
(D) \( \frac{1}{2}-\frac{1}{\sqrt{2}} \)
\( \mathrm{P} \)