An Amazing Factorial Equation Challenge | Can You Solve This?

preview_player
Показать описание
An Amazing Factorial Equation Challenge | Can You Solve This?

Join us in the algebraic video on an intriguing factorial exponential equation, perfect for Math Olympiad preparation! In this video, we explore the complexities and solutions of this challenging mathematical problem, offering insights and techniques essential for tackling Olympiad-level mathematics.

🌟 Subscribe for more Olympiad math challenges and solutions!

Topics covered:

Factorial equations
Exponential equation
Factorial
Factorial formula
How to solve exponential equations?
Algebra
Properties of exponents
Algebraic identities
Radicals
Factorial Exponential Equation
Math Olympiad preparation
Math Olympiad training
Exponent laws
Real solutions

Additional resources:

#factorial #exponentialequations #olympiadmath #mathematics #math #matholympiad #problemsolving #mathchallenge #radical #algebra

Don't forget to like this video if you found it helpful, subscribe to our channel for more Olympiad-focused content, and ring the bell to stay updated on our latest math-solving sessions.

Thanks for Watching !!
Рекомендации по теме
Комментарии
Автор

Setting 2x+3=t, the given equation is tantamount to (t-1)t(t+1)+2(t+1)=12 > t^3+t-10 =0. t=2 is the only real solution. Thus, 2x+3=2 > x=-1/2.

RashmiRay-cy
Автор

{1x+1x ➖ }/{20x+20x ➖ }+{10+10 ➖ }{3x+3x ➖ 1x^1/6^11x^4 /6^11^1x^4 /6^1^1x^4 /3^2x^2^2 /3^1x1^2 /3x^2 (x ➖ 3x+2). {3x+3x ➖ }/{200x+200x ➖ }+{400+400 ➖ }+{6x+6x ➖ }= 3^2x^2/3^4^3^4x^4 1^1x^1/1^2^23^2^2x^2^2 /1^13^1^1x^1^2 /3x^2 (x ➖ 3x+2). {2x+2x ➖ }/{20x+20x ➖ }+{30+30 ➖ }+{6x+6x ➖ 2^2x^2/10^10^12x^4 1^1x^1/2^5^2^5^3^4x^4/ 1^1^1^1^3^2^2x^2^2 /3^1^1x^1^2 3x^2 (x ➖ 3x+2).

RealQinnMalloryu
Автор

Numerator on the right side
100^[3! / (2x + 4)!] = [10^(2)]^[3! / (2x + 4)!]
100^[3! / (2x + 4)!] = 10^[(2 * 3!) / (2x + 4)!]
100^[3! / (2x + 4)!] = 10^[(2 * 3 * 2 * 1) / (2x + 4)!]
100^[3! / (2x + 4)!] = 10^[12 / (2x + 4)!]
100^[3! / (2x + 4)!] = 10^[12 / (2x + 4).(2x + 3).(2x + 2).(2x + 1)!]
100^[3! / (2x + 4)!] = 10^[12 / 2.(x + 2).(2x + 3).(2x + 2).(2x + 1)!]
100^[3! / (2x + 4)!] = 10^[12 / 4.(x + 2).(2x + 3).(x + 1).(2x + 1)!]
100^[3! / (2x + 4)!] = 10^[3 / (x + 2).(2x + 3).(x + 1).(2x + 1)!] → let: a = (2x + 3).(x + 1).(2x + 1)!
100^[3! / (2x + 4)!] = 10^[3/{a.(x + 2)}]
Denominator on the right side
10^[2! / (2x + 3)!] = 10^[2 / (2x + 3)!]
10^[2! / (2x + 3)!] = 10^[2 / (2x + 3).(2x + 2).(2x + 1)!]
10^[2! / (2x + 3)!] = 10^[2 / 2.(2x + 3).(x + 1).(2x + 1)!]
10^[2! / (2x + 3)!] = 10^[1 / (2x + 3).(x + 1).(2x + 1)!] → recall: a = (2x + 3).(x + 1).(2x + 1)!
10^[2! / (2x + 3)!] = 10^(1/a)

Ratio on the right side
100^[3! / (2x + 4)!] / 10^[2! / (2x + 3)!] = 10^[3/{a.(x + 2)}] / 10^(1/a)
100^[3! / (2x + 4)!] / 10^[2! / (2x + 3)!] = 10^{ [3/{a.(x + 2)}] - (1/a) }
100^[3! / (2x + 4)!] / 10^[2! / (2x + 3)!] = 10^{ [3 - (x + 2)] / a.(x + 2) }
100^[3! / (2x + 4)!] / 10^[2! / (2x + 3)!] = 10^{ (1 - x) / a.(x + 2) }

On the left side
10^[1! / (2x + 1)!] = 10^[1/(2x + 1)!] → recall: a = (2x + 3).(x + 1).(2x + 1)! → (2x + 1)! = a/[(2x + 3).(x + 1)]
10^[1! / (2x + 1)!] = 10^[1/{ a/[(2x + 3).(x + 1)] }]
10^[1! / (2x + 1)!] = 10^[(2x + 3).(x + 1)/a]

The original equation
10^[1! / (2x + 1)!] = { 100^[3! / (2x + 4)!] } / { 10^[2! / (2x + 3)!] } → according to the previous results
10^[(2x + 3).(x + 1)/a] = 10^{ (1 - x) / a.(x + 2) }
(2x + 3).(x + 1)/a = (1 - x) / a.(x + 2)
(2x + 3).(x + 1) = (1 - x)/(x + 2)
(2x + 3).(x + 1).(x + 2) = 1 - x
(2x + 3).(x² + 3x + 2) = 1 - x
2x³ + 6x² + 4x + 3x² + 9x + 6 = 1 - x
2x³ + 9x² + 14x + 5 = 0 → the aim is to make terms to the 2nd power disappeared → let: x = z - (3/2)
2.[z - (3/2)]³ + 9.[z - (3/2)]² + 14.[z - (3/2)] + 5 = 0
2.[z - (3/2)]².[z - (3/2)] + 9.[z² - 3z + (9/4)] + 14z - 21 + 5 = 0
2.[z² - 3z + (9/4)].[z - (3/2)] + 9z² - 27z + (81/4) + 14z - 21 + 5 = 0
2.[z³ - (3/2).z² - 3z² + (9/2).z + (9/4).z - (27/8)] + 9z² - 27z + (81/4) + 14z - 21 + 5 = 0
2.[z³ - (9/2).z² + (27/4).z - (27/8)] + 9z² - 13z + (17/4) = 0
2z³ - 9z² + (27/2).z - (27/4) + 9z² - 13z + (17/4) = 0
2z³ + (1/2).z - (5/2) = 0
4z³ + z - 5 = 0 ← we can see that (1) is an obvious root
z = 1 → recall: x = z - (3/2)
x = 1 - (3/2)
→ x = - 1/2

key_board_x