Covalent Bonding Of Hydrogen, Oxygen & Nitrogen | Properties of Matter | Chemistry | FuseSchool

preview_player
Показать описание
Learn the basics about the covalent bonding of hydrogen, oxygen and nitrogen as a part of the overall topic of properties of matter. The noble gas structure and covalent bonding is also discussed.

SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT.

This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind The Fuse School. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here:

Рекомендации по теме
Комментарии
Автор

Thanks you bro! I have chem exams monday! This helped alot!

worshipghoul
Автор

thank you so much! makes the whole process much clearer than having to memorise things i don't understand, thank you!

ilikebands
Автор

Thanks what a great video will help me in the igcse studies

xxdreamskillerxx
Автор

i feel like this wasn't properly explained i still don't understand when you know that you need to draw a dot and cross model and what the terms mean (i am doing revision and have a test on this coming after the holidays, in year 9 right now) would've been helpful but thank you i have understood a little

sayaraakhtar
Автор

I just want to clarify this doubt. When u say that both hydrogen atoms form covalent bonds, does the 2 electrons orbit both the atom, or form a fixed structure wherin the electrons do not orbit at all

rohith
Автор

thank you very much I have igcse chem exams tomorrow!!

federico___
Автор

You guys make such great videos! thank you so much

linhylinhlol
Автор

nice..thank u this video is really good

shreenashrena
Автор

so how is simple mollecular and giant covalent structures involved in this topic??

ilyaswaza
Автор

That is how u pronounce hydrogen lmfao slaps leg

josiahstrose
Автор

Atomic Simulations for these 3D with math and physics IDE link Below

calebhaines
Автор

thx so much, my exam is literly tomorow

plungergod
Автор

Notice that he never mentions what the octet rule even is. WHY

natashastringam
Автор

I would suggest not to use shells in an inappropriate context

sjlegends
Автор

The present work shows the inapplicability of the Pauli principle to chemical bond, and a new theoretical model of the chemical bond is proposed based on the Heisenberg uncertainty principle.


The Pauli exclusion principle and the chemical bond.

The Pauli exclusion principle — this is the fundamental principle of quantum mechanics, which asserts that two or more identical fermions (particles with half-integral spin) can not simultaneously be in the same quantum state.

Wolfgang Pauli, a Swiss theoretical physicist, formulated this principle in 1925 [1]. In chemistry exactly Pauli exclusion principle often considered as a ban on the existence of three-electron bonds with a multiplicity of 1.5, but it can be shown that Pauli exclusion principle does not prohibit the existence of three-electron bonds. To do this, analyze the Pauli exclusion principle in more detail.

According to Pauli exclusion principle in a system consisting of identical fermions, two (or more) particles can not be in the same states [2]. The corresponding formulas of the wave functions and the determinant are given in the reference (this is a standard consideration of the fermion system), but we will concentrate our attention on the derivation: "... Of course, in this formulation, Pauli exclusion principle can only be applied to systems of weakly interacting particles, when one can speak (at least approximately on the states of individual particles) "[2]. That is, Pauli exclusion principle can only be applied to weakly interacting particles, when one can talk about the states of individual particles.

But if we recall that any classical chemical bond is formed between two nuclei (this is a fundamental difference from atomic orbitals), which somehow "pull" the electrons one upon another, it is logical to assume that in the formation of a chemical bond, the electrons can no longer be regarded as weakly interacting particles . This assumption is confirmed by the earlier introduced notion of a chemical bond as a separate semi-virtual particle (natural component of the particle "parts" can not be weakly interacting).

Representations of the chemical bond given in the chapter "The Principle of Heisenberg's Uncertainty and the Chemical Bond" categorically reject the statements about the chemical bond as a system of weakly interacting electrons. On the contrary, it follows from the above description that in the chemical bond, the electrons "lose" their individuality and "occupy" the entire chemical bond, that is, the electrons in the chemical bond "interact as much as possible", which directly indicates the inapplicability of the Pauli exclusion principle to the chemical bond. Moreover, the quantum-mechanical uncertainty in momentum and coordinate, in fact, strictly indicates that in the chemical bond, electrons are a system of "maximally" strongly interacting particles, and the whole chemical bond is a separate particle in which there is no place for the notion of an "individual" electron, its velocity, coordinate, energy, etc., description. This is fundamentally not true. The chemical bond is a separate particle, called us "semi-virtual particle", it is a composite particle that consists of individual electrons (strongly interacting), and spatially located between the nuclei.

Thus, the introduction of a three-electron bond with a multiplicity of 1.5 is justified from the chemical point of view (simply explains the structure of the benzene molecule, aromaticity, the structure of organic and inorganic substances, etc.) is confirmed by the Pauli exclusion principle and the logical assumption of a chemical bond as system of strongly interacting particles (actually a separate semi-virtual particle), and as a consequence the inapplicability of the Pauli exclusion principle to a chemical bond.

Heisenberg's uncertainty principle and chemical bond.
For further analysis of chemical bond, let us consider the Compton wavelength of an electron:

λc.е. = h/(m*c)= 2.4263 * 10^(-12) m

The Compton wavelength of an electron is equivalent to the wavelength of a photon whose energy is equal to the rest energy of the electron itself (the standard conclusion is given below):

λ = h/(m*v), E = h*γ, E = me*c^2, c = γ*λ, γ = c/λ

E = h*γ, E = h*(c/λ) = me*c^2, λc.е. = h/(m*c)

where λ is the Louis de Broglie wavelength, me is the mass of the electron, c, γ is the speed and frequency of light, and h is the Planck constant.
It is more interesting to consider what happens to an electron in a region with linear dimensions smaller than the Compton wavelength of an electron. According to Heisenberg uncertainty in this area, we have a quantum mechanical uncertainty in the momentum of at least m*c and a quantum mechanical uncertainty in the energy of at least me*c^2 :

Δp ≥ mе*c and ΔE ≥ me*c^2

which is sufficient for the production of virtual electron-positron pairs. Therefore, in such a region the electron can no longer be regarded as a "point object", since it (an electron) spends part of its time in the state "electron + pair (positron + electron)". As a result of the above, an electron at distances smaller than the Compton length is a system with an infinite number of degrees of freedom and its interaction should be described within the framework of quantum field theory. Most importantly, the transition to the intermediate state "electron + pair (positron + electron)" carried per time ~ λc.е./c

Δt = λc.е./c = 2.4263*10^(-12)/(3*10^8) = 8.1*10^(-20) s

Now we will try to use all the above-mentioned to describe the chemical bond using Einstein's theory of relativity and Heisenberg's uncertainty principle. To do this, let's make one assumption: suppose that the wavelength of an electron on a Bohr orbit (the hydrogen atom) is the same Compton wavelength of an electron, but in another frame of reference, and as a result there is a 137-times greater Compton wavelength (due to the effects of relativity theory):

λc.е. = h/(m*c) = 2.4263*10^(-12) m λb. = h/(m*v)= 2*π*R = 3.31*10^(-10) m

λb./λc.е.= 137 where R= 0.527 Å, the Bohr radius.

Since the De Broglie wavelength in a hydrogen atom (according to Bohr) is 137 times larger than the Compton wavelength of an electron, it is quite logical to assume that the energy interactions will be 137 times weaker (the longer the photon wavelength, the lower the frequency, and hence the energy ). We note that 1 / 137.036 is a fine structure constant, the fundamental physical constant characterizing the force of electromagnetic interaction was introduced into science in 1916 year by the German physicist Arnold Sommerfeld as a measure of relativistic corrections in describing atomic spectra within the framework of the model of the N. Bohr atom.

To describe the chemical bond, we use the Heisenberg uncertainty principle:

Δx*Δp ≥ ћ/2

Given the weakening of the energy interaction 137 times, the Heisenberg uncertainty principle can be written in the form:

Δx*Δp ≥ (ћ*137)/2

According to the last equation, the quantum mechanical uncertainty in the momentum of an electron in a chemical bond must be at least me * c, and the quantum mechanical uncertainty in the energy is not less than me * c ^ 2, which should also be sufficient for the production of virtual electron-positron pairs.

Therefore, in the field of chemical bonding, in this case, an electron can not be regarded as a "point object", since it (an electron) will spend part of its time in the state "electron + pair (positron + electron)", and therefore its interaction should be described in the framework of quantum field theory.
This approach makes it possible to explain how, in the case of many-electron chemical bonds (two-electron, three-electron, etc.), repulsion between electrons is overcome: since the chemical bond is actually a "boiling mass" of electrons and positrons, virtual positrons "help" overcome the repulsion between electrons. This approach assumes that the chemical bond is in fact a closed spatial bag (a potential well in the energy sense), in which "boiling" of real electrons and also virtual positrons and electrons occurs, and the "volume" of this potential bag is actually a "volume" of chemical bond and also the spatial measure of the quantum-mechanical uncertainty in the position of the electron.

Strictly speaking, with such a consideration, the electron no longer has a certain energy, momentum, coordinates, and is no longer a "point particle", but actually takes up the "whole volume" of chemical bonding. It can be argued that in the chemical bond a single electron is depersonalized and loses its individuality, in fact it does not exist, but there is a "boiling mass" of real electrons and virtual positrons and electrons that by fluctuate change each other. That is, the chemical bond is actually a separate particle, as already mentioned, a semi-virtual particle. Moreover, this approach can be extended to the structure of elementary particles such as an electron or a positron: an elementary particle in this consideration is a fluctuating vacuum closed in a certain spatial bag, which is a potential well for these fluctuations.

It is especially worth noting that in this consideration, electrons are strongly interacting particles, and therefore the Pauli principle is not applicable to chemical bond (for more details, see the section "The Pauli Principle and the Chemical Bond") and does not prohibit the existence of the same three-electron bonds with a multiplicity of 1.5.


volodymyrbezverkhniy