Все публикации

Prove (dy/dx) = (d/dx)(√u) = (du/dx)/(2√u), if y = √u

Prove (dy/dx) = (d/dx)(cv) = c(dv/dx), if y = cv

Prove (dy/dx) = (d/dx)(c/v) = [-c(dv/dx)]/(v^2), if y = c/v

Prove (dy/dx) = (d/dx)(u/v) = [v(du/dx) - u(dv/dx)]/(v^2), if y = u/v

Prove (dy/dx) = (d/dx)(uv) = u(dv/dx) + v(du/dx), if y = uv

Prove (dy/dx) = (d/dx)(u+v) = (du/dx)+(dv/dx), if y = u+v

Prove: dy/dx = (d/dx)(cos x) = -sin x, if y = cos x

Prove: (dy/dx) = (d/dx)(sin x) = cos x, if y = sin x

Prove that the limit of [sin (theta)]/theta = 1, as theta approaches to zero.

The Exact Value of sin 72 degrees.

The Exact Value of cos 72 degrees.

Divide [36+12x−11(x^3)−2(x^5)−5(x^6)−65(x^2)+(x^7)+34(x^4)] by (x−4)

Divide [164x−84(x^2)−7(x^3)+17(x^4)+2(x^6)−72] by [12x+(x^3)−8]

Divide [(x^5)+11(x^4)+47(x^3)+97(x^2)+96x+36] by [(x^3)+6(x^2)+11x+6]

The Exact Value of sin 18 degrees (With Figure-Solution)

Prove dy/dx = nx^(n-1), if y = x^n and n = positive integers

Prove f'(x) = nx^(n-1), if f(x) = x^n and n = positive integers

Prove:⁡⁡ (23⁡+⁡8i)/i⁡ = ⁡8 - ⁡23⁡i (Alternate Solution)

Prove: ⁡⁡(-1⁡-⁡4i)⁡(-7⁡-⁡3i)⁡ = -5⁡ + ⁡31i

Prove:⁡⁡ i^12⁡ = 1

Prove: ⁡⁡i^11⁡ = -√(-1)

Prove: ⁡⁡i^10⁡ = -1

Prove: ⁡⁡i^9⁡ = ⁡√(-1)

Prove: ⁡⁡i^8⁡ = 1