Apache Spark | Databricks for Apache Spark | Parse Json in Spark Dataframe | Using Spark SQL

preview_player
Показать описание
#apachespark #json #databricks #bigdata

Apache Spark | Databricks for Apache Spark | Parse Json in Spark Dataframe | Using Spark SQL
In this video, we will learn a new feature update from Databricks to parse the JSON string column in Spark Dataframe easily using Spark SQL.

Dataset used in Demo:

Blog link to learn more on Spark:

Blog to handle nested Json file using Spark

Linkedin profile:

FB page:
Рекомендации по теме
Комментарии
Автор

I am interested to know if we can use advanced UDF features available in scala and Python thru spark SQL.

sid
Автор

superb video and how to handle array elements in a single string column instead of pyspark(explode) ...like using only spark sql?

saisaranv
Автор

Thank's for the video, I've a question can we use the Select query from spark sql (what you show on the last) within Synapse notebook?

ybj
Автор

Very good explanation.Just a small doubt.I need to read file from API how to do that?

adelinejebamalar
Автор

Hi Azar, i am getting null values when using from_json, can you help me figure out the missing piece here . TY
~ input is the .csv file with json e.g.
id, request
1, {"Zipcode":704, "ZipCodeType":"STANDARD", "City":"PARC PARQUE", "State":"PR"}
2, {"Zipcode":704, "ZipCodeType":"STANDARD", "City":"PASEO COSTA DEL SUR", "State":"PR"}
~my code (scala/spark)
val input_df = spark.read.option("header", true).option("escape", "\"").csv(json_file_input)
val json_schema_abc = StructType(Array(
StructField("Zipcode", IntegerType, true),
StructField("ZipCodeType", StringType, true),
StructField("City", StringType, true),
StructField("State", StringType, true))
)
val output_df = input_df.select($"id", from_json(col("request"), json_schema_abc).as("json_request"))
.select("id", "json_request.*")

thesadanand
Автор

Sir i need a help, can you please suggest how to calculate the size of data frame in bytes in python please

magicmisfits
Автор

How could We do the same without databrcks?.I mean can we do this with only pyspark?

keepsmile
Автор

Sir I have a table in sql in which I have a column holding json values.
I copied the data in a CSV file.
While printing schema I'm getting _corrupt_record.
I used mode="dropMalformed" it is returning zero records means my each row is malformed.
How to solve it sir

Randomvideos-ucsp