Limit of sin(x^2 + y^2)/(x^2 + y^2) using Polar Coordinates and L'Hopital's Rule

preview_player
Показать описание
Limit of sin(x^2 + y^2)/(x^2 + y^2) using Polar Coordinates and L'Hopital's Rule
Рекомендации по теме
Комментарии
Автор

So the trick was that r^2=x^2+y^2... Great and efficient explanation! Thanks

alexcodema
Автор

So efficient! learning us this in under 2 minutes!

YB
Автор

Can you calculate this limit without polar coordinates?

degenerationz
Автор

On break and still going' ham.. Good man!

vedgsesh
Автор

What happen if x and y are too general that can’t map to the polar coordinates?

ToanLe-njiu
Автор

Hey . How should i approach limit of when x goes to 0 and y goes to 0

notAlexanderOFF
Автор

if I have this case: lim (x, y)->(1, 1) sin(x^2-y^2)/(x-y) what is the correct procedure in order to obtain 2??

nachoman
Автор

My problem is similar is Limit sen(x^2+y^2+z^2)/x^2+y^2+z^2 in (x, y, z) a 0

fernandolopez-dzui
Автор

How to evaluate lim (x, y) tends to (0, 0) xsin(x^2+y^2)/(x^2+y^2) ? Please help...

bhaskardas