filmov
tv
Prove that : `cos^6 A- sin^6 A = cos 2A (1- 1/4 sin^2 2A)`
Показать описание
Prove that : `cos^6 A- sin^6 A = cos 2A (1- 1/4 sin^2 2A)`
Doubtnut
Рекомендации по теме
0:02:15
Prove: sin^6 A+cos^6 A=1-3sin^2 Acos^2 A
0:11:14
#Trigonometric# most important question for see exam#prove that: sin^6A+cos^6A= 1/8(5+3 cos4A)
0:02:52
Prove: Cos^6 θ+ sin^6 θ= 1/4(1+3cos^2 2θ)
0:02:43
Prove: cos^6 θ- sin^6 θ= cos2θ(1- 1/4 sin^2 2θ)
0:06:42
Prove that cos `6^(@) cos 42^(@) cos 66^(@) cos 78^(@) =(1)/(16)`
0:06:26
How to Prove cos 6x = 32 cos^6x - 48cos^4x+18cos^2x-1 || Trigonomteric Identity || Trigonometry
0:03:15
Prove the following: cos 6 x=32 cos ^6 x-48 cos ^4 x+18 cos ^2 x-1 cos 6 x=
0:02:43
Prove that ` 2( sin^6 A +cos^6A)- 3 (sin^4A+ cos^4 A)+1=0`
0:03:35
`cos^6A-sin^6A=cos2A(1-1/4sin^2 2A)`
0:06:28
Prove that 2(sin^6 theta + cos^6 theta) - 3(sin^4 theta + cos^4 theta) + 1 = 0 | Trigonometry
0:07:42
Prove Cos³2A + 3Cos3A = 4(Cos^6A- Sin^6A) Class Ten || Trigonometry || Hindi ||
0:08:57
sin^4θ cos^2θ=1/32 (cos6θ-cos2θ-2cos4θ+2)
0:24:07
Expansion of cos 6(theta) # sin 5(theta)/sin (theta) # Trigonometry # Allied Maths -1
0:20:19
cos ^8 theta # cos ^6 theta # Trigonometry # SM22A # April 2022 question # Allied maths 1
0:15:42
Prove that sin^6a+cos^6a=1-3 sin^2a cos^2a. Prove that sin^8x-cos^8x=(sin^2x-cos^2x)(1-2 sin^2x cos^
0:03:26
The expression \( \frac{\cos 6 x+6 \cos 4 x+15 \cos 2 x+10}{\cos 5 ...
0:06:47
Prove that sin^6x+cos^6x=1-3 sin^2x cos^2x. Prove that sin^6+cos^6=1-3 sin^2 cos^2. Trigonometry.
0:07:14
Trigonometry | 2(sin^6 θ+cos^6 θ)−3(sin^4 θ+cos^4 θ) = - 1
0:06:17
2(sin^6 θ+cos^6 θ)-3(sin^4 θ+cos^4 θ)+1=0 @niharmhirani
0:20:24
To Prove Cos(α-β), Sin(α-β), Cos(α+β), Sin(α+β) formulas using Vector Method
0:02:22
Prove: `cos e c^6theta=cot^6theta+3cot^2thetacos e c^2theta+1`
0:05:42
Prove that 𝟐(𝐬𝐢𝐧^𝟔 𝛉+𝐜𝐨𝐬^𝟔 𝛉)−𝟑(𝐬𝐢𝐧^𝟒 𝛉+𝐜𝐨𝐬^𝟒 𝛉)+𝟏=𝟎. CBSE 2023...
0:01:24
Prove that:sin^2(π/6)+cos^2(π/3)-tan^2(π/4)=(-1/2)
0:03:32
If `sintheta+costheta=m ,` then prove that `sin^6theta+cos^6theta=(4-3(m^2-1)^2)/4,\ w h e r e