Calculate area of the Blue shaded Rectangle | Semicircle | Important Geometry skills explained

preview_player
Показать описание

Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!

Need help with solving this Math Olympiad Question? You're in the right place!

I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at

Calculate area of the Blue shaded Rectangle | Semicircle | Important Geometry skills explained

Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!

#CalculateAreaOfBlueRectangle #CalculateArea #AreaOfRectangle #AreaOfTriangle #GeometryMath #QuarterCircle #PythagoreanTheorem #PerpendicularBisectorTheorem
#MathOlympiad #ThalesTheorem #RightTriangle #RightTriangles #CongruentTriangles
#OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
#MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
#blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height
#MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam

How to solve Olympiad Mathematical Question
How to prepare for Math Olympiad
How to Solve Olympiad Question
How to Solve international math olympiad questions
international math olympiad questions and solutions
international math olympiad questions and answers
olympiad mathematics competition
blackpenredpen
math olympics
olympiad exam
olympiad exam sample papers
math olympiad sample questions
math olympiada
British Math Olympiad
olympics math
olympics mathematics
olympics math activities
olympics math competition
Math Olympiad Training
How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
Po-Shen Loh and Lex Fridman
Number Theory
There is a ridiculously easy way to solve this Olympiad qualifier problem
This U.S. Olympiad Coach Has a Unique Approach to Math
The Map of Mathematics
mathcounts
math at work
Pre Math
Olympiad Mathematics
Two Methods to Solve System of Exponential of Equations
Olympiad Question
Find Area of the Shaded Triangle in a Rectangle
Geometry
Geometry math
Geometry skills
Right triangles
imo
Competitive Exams
Competitive Exam
Calculate the Radius
Semicircle
Quarter circle
Pythagorean Theorem
Thales' Theorem
Right triangles
Congruent triangles
Square
Rectangle
Area of rectangle
Area of circle

Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.
Рекомендации по теме
Комментарии
Автор

Fantastic. What a seemingly unsolvable problem and what an amazing solution

Thanks PreMath Guru Ji

procash
Автор

you can construct a perpendicular to the chord of EC and OC would be length of the rectangle since its the radius of the circle and CD would be breadth and then use similarities
We get,
L/6√3=12√3/B
LB=6√3*12√3=216
(I have taken BC as length and AB as breadth)

ayushshinde
Автор

c = 12 √3 = 20, 785 cm

Similarly of triangles:
(c/2) / R = (R+x) / c
(R+x). R = (c/2). c = Area
(R+x). R = c² / 2
(R+x). R = 20, 785² / 2
Area = 216 cm² ( Solved √ )

The area of this rectangle with base R+x and height R
is equal to:
The area of a square with diagonal 12√3

marioalb
Автор

Call G the opposite of C along the diameter in the semicircle, then I noticed a similitude between GEC and DEC triangles (because they are rectangles and have an angle in common)
GC : EC = EC : DC
2r : 12sqrt(3) = 12sqrt(3) : DC
and we get
DC = 216/r
Area = r*216/r = 216

solimana-soli
Автор

Wish you were my school teacher. Thank you for the way the problem was solved. Very methodical.

vara
Автор

Interestingly, point E can be moved to coincide with point F and we then have a square FBCO with the diagonal of 12 root 3.
The area of that square is given by the formula 1/2 x diagonal squared.
1/2 x (12 root 3 )^2 = 216.

montynorth
Автор

I dare say there is some room left for optimization: if we leave aside EA and use only DE for our workout we will have a slight simplified process:
1) Let h= DE;
2) r^2= = h^2+x^2 => h^2= r^2-x^2;
3) (12*sqrt(3))^2= (r+x)^2+ h^2;
4) lets substitute h^2:
432= (r+x)^2+ (r^2-x^2);
432= r^2+x^2+2rx+r^2-x^2;
432=2r^2+2rx
AreaBlue = r^2+rx= 432/2=216.

michaelkouzmin
Автор

The area of the rectangle is(1/2)*semicircle chord square. We can solve it by shortly if CF is the radius of your drawn figure of semicircle, then by tangent triangle are ∆ EDC & ∆ FEC are congruent triangles, so we have EC/FC=DC/EC, EC^2=FC*DC, 12√3 * 12√3= 2r * (x+r), 432= 2r * (x+r), 216= r * (x+r) = area of rectangle

nareshkange
Автор

Let r be the radius of the semicircle. And OD be a.
DE^2= r^2 —a^2
By Pythagorean theorem,
DE^2 + CD^2= 144•3
r^2 -a^2 +(r+a)^2=144•3
2r^2 + 2ar=144•3
r(r+a)=216
Area of blue rectangle = r(r+a)=216

spiderjump
Автор

Lets call the other end of the semicircle's diameter point G. Now draw EG.
Triangle EGC is a right triangle from angle GEC subtending the diameter GC.
Triangle EDC is given as a right triangle.
Triangles EDC and GEC share common angle ECD/GCD.
Then triangles EDC and GEC are similar triangles.

From similar triangles we have GC/CE = CE/ED.
CE = 12*sqrt(3) is given.
Let the radius be r, then diameter GC equals 2*r and the height of the rectangle is BC=r.
CD is the length of the rectangle, call that x.
The area of the rectangle can be expressed as CD*BC = r*x.
Now just substitute and simplify: GC/CE = CE/ED -> (2*r)/(12*sqrt(3)) = (12*sqrt(3))/x -> r*x = 216.

The area of the rectangle is 216.

bsmith
Автор

otetaan taas yksinkertaisin ehdot täyttävä tapaus. Piste E siirretään puoliympyrän vasempaan nurkkaan . Ala on 12*sqrt3 * 6*sqrt3.

vierinkivi
Автор

Интересно, что к этому времени только три пользователя догадались, что задачу можно решить простым и быстрым способом, основанном на том, что результат не зависит от положения точки E на стороне AD (угол DCE может изменятся от 0 до 45°, соотношение сторон ABCD - от 1:1 до 2:1).
Все они рассмотрели один крайний случай: E совпадает с A (угол DCE=45°, ABCD - квадрат).
Мне остаётся только рассмотреть другой крайний случай: E совпадает с D (угол DCE=0, ABCD - прямоугольник 2:1).
[ABCD]=12sqrt3×6sqrt3=216
Что и требовалось доказать!

rabotaakk-nwnm
Автор

Your approach to these minimal information projects is fascinating!🥂😀❤

bigm
Автор

Awesome! I think I'm ready now too tackle a Millineum Prize Prize Problem . I need the money!🙂

wackojacko
Автор

Seems to be a interesting puzzle.😃 First let r be the radius, OD be x, so the answer is (r+x)r. Now DE^2=r^2-x^2, so 144x3=432=(r^2-x^2)+(r+x)^2=r^2-x^2+r^2+2rx+x^2=2r^2+2rx=2r(r+x), therefore my answer is 432/2=216.🙂

misterenter-izrz
Автор

Draw a perpendicular OG to EC. Join OE. By calculations of angles. OD = OG. So DE = 6*sqrt3. Angle OCE = 30.
So DC = 18, OC = 12. So Area ABCD = 12*18 = 216

vidyadharjoshi
Автор

Generalization: the area of the blue rectangle is CE² / 2
Trivia: the area of this blue rectangle is 3³ + 4³ + 5³ = 6³

ybodoN
Автор

Ho ottenuto lo stesso risultato, molto più velocemente, con le proporzioni tra il rettangolo DCE e EC/2 OC . DC x OC = 6√3 x 12√3 = 216

sebastianoardita
Автор

Nice problem, square root of 3 was my homing beacon, then a spoonful of Thales and alakazam 🤓

theoyanto
Автор

On peut librement faire varier l'angle DCE. Prenons 45°. OCBF (ou ABCD, c'est le même) est alors un carré de coté c et dont la diagonale est 12.3^0, 5 . Ce qui donne : 2c^2=(12.3^0, 5)^2 c^2=216

EPaozi
visit shbcf.ru