filmov
tv
R-Ladies Freiburg (English) Best of 2021: Data Wrangling with dyplyr / the tidyverse!

Показать описание
All materials available on the R-Ladies Freiburg Github repo:
Event was originally live on Zoom with R-Ladies Freiburg, check out our upcoming events here:
2021 was a great year for R-Ladies Freiburg! As the new year begins, let's review our favorite tips and tricks from last year's workshops.
In this workshos, we'll go through the most life-changing data wrangling tips we learned last year. These commands make it easy to get your data in exactly the right format for graphs or statistical modeling and make your workflows more reproducible and less error-prone! Join us to learn tips for working with select(), mutate() and summarize() including across(), rowwise(), slice_max() and more!
Event was originally live on Zoom with R-Ladies Freiburg, check out our upcoming events here:
2021 was a great year for R-Ladies Freiburg! As the new year begins, let's review our favorite tips and tricks from last year's workshops.
In this workshos, we'll go through the most life-changing data wrangling tips we learned last year. These commands make it easy to get your data in exactly the right format for graphs or statistical modeling and make your workflows more reproducible and less error-prone! Join us to learn tips for working with select(), mutate() and summarize() including across(), rowwise(), slice_max() and more!
R-Ladies Freiburg (English) – Best of 2021: Data visualisation
R-Ladies Freiburg (English) Best of 2021: Data Wrangling with dyplyr / the tidyverse!
R Ladies Freiburg (English) - Intro to R & R-Studio: Zero to sHero {Part 1}
R-Ladies Freiburg (English) - Intro to Shiny: Interactive Dashboards for Beginners!
R-Ladies Freiburg (English) - Shiny Data Dashboards: Eurovision
R-Ladies Freiburg (English) - Getting to know Quarto
R-Ladies Freiburg (English) - Color your ggplot beautiful!
R-Ladies Freiburg (English) - Level up your ggplot: Adding labels, arrows and other annotations
R-Ladies Freiburg, Sentiment Analysis with R (English)
Three reasons to use Tidymodels — Julia Silge — R-Ladies East Lansing (English)
R-Ladies Freiburg (English) - Shiny Apps Workshop
R-Ladies Freiburg (English) - Our first data dashboard: Interactive plots with Shiny!
R-Ladies Freiburg (English) - R Markdown: Introduction to documents and presentations
R-Ladies Freiburg (English) - Create beautiful documents, presentations, & articles with R Markd...
R-Ladies New York (English) - Writing Meaningful Alt-Texts for Data Visualizations in R - Liz Hare
R-Ladies Freiburg (English) - Tidy Data: Zero to sHero {Part 2}
R-Ladies Freiburg (English) - Visualization: Zero to sHero {Part 4}
R-Ladies Bergen (English) - Best coding practices
R-Ladies Freiburg (English) - Adv. Wrangling: Zero to sHero {Part 5} - Kyla McConnell & Julia Mü...
R-Ladies New York (English) - Creating model en mass with workflowsets - Max Kuhn
R-Ladies Freiburg (English) - Panel discussion: Women in Science
R-Ladies Boulder (English) - Reproducible Code & Visualization Best Practices - Lara Southard, P...
R-Ladies Freiburg (English) - Data Wrangling with dplyr: Zero to sHero {Part 3}
R-Ladies Freiburg (English) - Text analysis with R: Topic modeling
Комментарии