Taming another terrifying integral

preview_player
Показать описание
Here's an unexpected form for one of our favourite integrals. Incredible how symmetry can simplify such terrifying structures into familiar friends.
The gaussian integral evaluated using Feynman's trick:
Рекомендации по теме
Комментарии
Автор

Never thought there would be an integration asmr on YouTube but here we are

broadecho
Автор

Damn...very smart way to evaluate the Gaussian integral.

dscasg
Автор

Very smart substitutions. Good job. Thank you very much.

MrWael
Автор

Before I watch, here is my attempt:

int(0, inf)[x^-lnx•arctanx]dx

substitute u = lnx

= int(-inf, inf)[e^-x^2•arctan(e^x)dx

Break integral into odd and even parts

1/2int(-inf, inf)[e^-x^2(arctan(e^x)+arctan(e^-x))]dx

= 1/2int(-inf, inf)[e^-x^2(arctan(e^x)+arctan(1/e^x))]dx

Use identity arctanx + arctan(1/x) = pi/2

pi/4int(-inf, inf)[e^-x^2]dx

= pi•sqrt(pi)/4

taterpun
Автор

Excelent video! i want to ask you a question, Do you do this videos in a phone, or in a tablet?

Santiago_CastellanosG
Автор

I came up with a nasty integral the other day: ((1 + x^2) arctan x + 1/2 sin(2 x)) sec^2(x) / (1 + x^2) . There is a rather simple primitive function to this mess.

emanuellandeholm
Автор

I just want to be you, I love math so much

Ahmed_Magdy
Автор

sup math 505 love your videos
you are integral to my wellbeing

jonsmith
Автор

My name is Ahmed like Ahmed's integral

Ahmed_Magdy