filmov
tv
Transformers explained | The architecture behind LLMs
![preview_player](https://i.ytimg.com/vi/ec9IQMiJBhs/sddefault.jpg)
Показать описание
All you need to know about the transformer architecture: How to structure the inputs, attention (Queries, Keys, Values), positional embeddings, residual connections. Bonus: an overview of the difference between Recurrent Neural Networks (RNNs) and transformers.
9:19 Order of multiplication should be the opposite: x1(vector) * Wq(matrix) = q1(vector). Otherwise we do not get the 1x3 dimensionality at the end. Sorry for messing up the animation!
Outline:
00:00 Transformers explained
00:47 Text inputs
02:29 Image inputs
03:57 Next word prediction / Classification
06:08 The transformer layer: 1. MLP sublayer
06:47 2. Attention explained
07:57 Attention vs. self-attention
08:35 Queries, Keys, Values
09:19 Order of multiplication should be the opposite: x1(vector) * Wq(matrix) = q1(vector).
11:26 Multi-head attention
13:04 Attention scales quadratically
13:53 Positional embeddings
15:11 Residual connections and Normalization Layers
17:09 Masked Language Modelling
17:59 Difference to RNNs
Thanks to our Patrons who support us in Tier 2, 3, 4: 🙏
Dres. Trost GbR, Siltax, Vignesh Valliappan, @Mutual_Information , Kshitij
📄 Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." Advances in neural information processing systems 30 (2017).
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
🔥 Optionally, pay us a coffee to help with our Coffee Bean production! ☕
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
🔗 Links:
#AICoffeeBreak #MsCoffeeBean #MachineLearning #AI #research
Music 🎵 : Sunset n Beachz - Ofshane
Video editing: Nils Trost
9:19 Order of multiplication should be the opposite: x1(vector) * Wq(matrix) = q1(vector). Otherwise we do not get the 1x3 dimensionality at the end. Sorry for messing up the animation!
Outline:
00:00 Transformers explained
00:47 Text inputs
02:29 Image inputs
03:57 Next word prediction / Classification
06:08 The transformer layer: 1. MLP sublayer
06:47 2. Attention explained
07:57 Attention vs. self-attention
08:35 Queries, Keys, Values
09:19 Order of multiplication should be the opposite: x1(vector) * Wq(matrix) = q1(vector).
11:26 Multi-head attention
13:04 Attention scales quadratically
13:53 Positional embeddings
15:11 Residual connections and Normalization Layers
17:09 Masked Language Modelling
17:59 Difference to RNNs
Thanks to our Patrons who support us in Tier 2, 3, 4: 🙏
Dres. Trost GbR, Siltax, Vignesh Valliappan, @Mutual_Information , Kshitij
📄 Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." Advances in neural information processing systems 30 (2017).
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
🔥 Optionally, pay us a coffee to help with our Coffee Bean production! ☕
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
🔗 Links:
#AICoffeeBreak #MsCoffeeBean #MachineLearning #AI #research
Music 🎵 : Sunset n Beachz - Ofshane
Video editing: Nils Trost
Комментарии