filmov
tv
Neural Network Sine Function Approximation
![preview_player](https://i.ytimg.com/vi/qEmFfJJ2HKI/maxresdefault.jpg)
Показать описание
from numpy import asarray
from matplotlib import pyplot
import math
import numpy
# define the dataset
# reshape arrays into into rows and cols
# separately scale the input and output variables
scale_x = MinMaxScaler()
scale_y = MinMaxScaler()
# design the neural network model
model = Sequential()
# define the loss function and optimization algorithm
# ft the model on the training dataset
# make predictions for the input data
# inverse transforms
# report model error
print('MSE: %.3f' % mean_squared_error(y_plot, yhat_plot))
# plot x vs y
# plot x vs yhat
from matplotlib import pyplot
import math
import numpy
# define the dataset
# reshape arrays into into rows and cols
# separately scale the input and output variables
scale_x = MinMaxScaler()
scale_y = MinMaxScaler()
# design the neural network model
model = Sequential()
# define the loss function and optimization algorithm
# ft the model on the training dataset
# make predictions for the input data
# inverse transforms
# report model error
print('MSE: %.3f' % mean_squared_error(y_plot, yhat_plot))
# plot x vs y
# plot x vs yhat
Neural Network Sine Function Approximation
Visualization of the universal approximation theorem
Neural network learning to approximate Sine-function - neural network - function approximation
Learning Sine Function Using Neural Network
Sine function approximation from wish
Neural Network learns the sine function
AI learns sin function
Neural Network Function Approximation
My first neural network learns to draw sine function.
Fast and Simple Approximation of Sine Function
Neural Network learns sine function in NumPy/Python with backprop from scratch
Training a neural network on the sine function.
The Universal Approximation Theorem for neural networks
Function approximation by using neural network. (Machine learning, Deep learning)
Neural Network sinus function approximation
Neural Network -- Visual Example of Learning a Trigonometric Function
Neural Network - function approximation
Neural Network Sinus approximation
Watching Neural Networks Learn
Pytorch Zero to Hero: Neural Network for sin x regression in 20 mins
Function Approximation Using Neural Network
Neural Network learns Sine Function with custom backpropagation in Julia
A neural network with an unusual activation function learns the sine function.
Function approximation with one-bit Bernstein and neural networks - Weilin Li - FFT Dec 20th 2021
Комментарии