Generate Pydantic & JSON Objects from Text using LlaMa-3 | LlamaIndex | Groq API

preview_player
Показать описание
Hi, My name is Sunny Solanki, and in this video, I provide a step-by-step guide to extracting structured data with Open Source LLMs (LlaMa-3). We use the famous LLM Apps building framework LlamaIndex for coding. We access LLMs through Groq API. Structured data extraction from unstructured data is one of the useful applications of LLMs.

============================================
==============================================
=======================================================
=======================================================
=======================================================
=======================================================
=======================================================
=======================================================

Important Chapters:

0:00 - Structured Data Extraction using LlamaIndex Intro
1:03 - Code Start
2:12 - Load LLM Llama-3
4:00 - Define Structured Data Schemas (Pydantic Python Classes)
6:42 - Generate Structured (Pydantic & JSON) Output

#python #datascience #datasciencetutorial #python #pythonprogramming #pythoncode #pythontutorial #llama3 #llamaindex #llamaindex-structured-output #llamaindex-llama3 #groqapi #llamaindex-open-source-llms #llamaindex-data-extraction #llama-3-data-extraction #json-output #pydantic-output #pydantic-objects #python-objects
Рекомендации по теме
Комментарии
Автор

Nice tutorial. May I know what configuration of computer required to run in local machine . With 8gb Ram above tutorial possible.

karthikb.s.k.