filmov
tv
Programa de Doutorado: Hodge Theory - Class 11 - Derived Functors
Показать описание
Professor: Roberto Villaflor
Abelian categories with enough injectives, the derived object of a complex is well defined, simple complex associated to a double complex resolution, every complex admits a derived object, the derived objects are defined in the derived category.
Pré-requisito: Análise complexa
Integrais elípticas. Integrais abelianas e múltiplas. Noções básicas de homologia singular. Isomorfismo de Leray-Thom-Gysin. Teorema de Lefschetz em seções hiperplanas. Decomposição de Lefschetz. Teorema difícil de Lefschetz (enunciado). Teorema de fibração de Ehresmann. Monodromia e ciclos evanecentes. Conjectura de Hodge e teorema (1,1) de Lefschetz. Cohomologia de Rham de hipersuperfícies suaves (teorema de Griffiths). Ciclos de Hodge de variedades de Fermat. Número de Picard de superfícies de Fermat. Hypercohomologia. Formas diferenciais e campos vetoriais. Cohomologia de Rham algébrica. Teorema de Atiyah-Hodge. Filtração de Hodge. Conexão de Gauss-Manin algébrica e analítica. Teorema de transversalidade de Griffiths. Variação infinitesimal de estruturas de Hodge (IVHS). Mapa de Kodaira-Spencer. Teorema de Noether-Lefschetz. Loci de Noether-Lefschetz e Hodge. Espaços tangentes de loci de Hodge.
Referências:
LEWIS, JAMES D,. – A survey of the Hodge conjecture. Appendix B by B. Brent Gordon. CRM Monograph Series, 10. American Mathematical Society, Providence, RI, 1999.
CLAIRE VOISIN. – Hodge theory and complex algebraic geometry. Volume 76 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002.
CLAIRE VOISIN. – Hodge theory and complex algebraic geometry. {II}, Volume 77 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2003.
IMPA - Instituto de Matemática Pura e Aplicada ©
Os direitos sobre todo o material deste canal pertencem ao Instituto de Matemática Pura e Aplicada, sendo vedada a utilização total ou parcial do conteúdo sem autorização prévia e por escrito do referido titular, salvo nas hipóteses previstas na legislação vigente.
The rights over all the material in this channel belong to the Instituto de Matemática Pura e Aplicada, and it is forbidden to use all or part of it without prior written authorization from the above mentioned holder, except in the cases prescribed in the current legislation.
Abelian categories with enough injectives, the derived object of a complex is well defined, simple complex associated to a double complex resolution, every complex admits a derived object, the derived objects are defined in the derived category.
Pré-requisito: Análise complexa
Integrais elípticas. Integrais abelianas e múltiplas. Noções básicas de homologia singular. Isomorfismo de Leray-Thom-Gysin. Teorema de Lefschetz em seções hiperplanas. Decomposição de Lefschetz. Teorema difícil de Lefschetz (enunciado). Teorema de fibração de Ehresmann. Monodromia e ciclos evanecentes. Conjectura de Hodge e teorema (1,1) de Lefschetz. Cohomologia de Rham de hipersuperfícies suaves (teorema de Griffiths). Ciclos de Hodge de variedades de Fermat. Número de Picard de superfícies de Fermat. Hypercohomologia. Formas diferenciais e campos vetoriais. Cohomologia de Rham algébrica. Teorema de Atiyah-Hodge. Filtração de Hodge. Conexão de Gauss-Manin algébrica e analítica. Teorema de transversalidade de Griffiths. Variação infinitesimal de estruturas de Hodge (IVHS). Mapa de Kodaira-Spencer. Teorema de Noether-Lefschetz. Loci de Noether-Lefschetz e Hodge. Espaços tangentes de loci de Hodge.
Referências:
LEWIS, JAMES D,. – A survey of the Hodge conjecture. Appendix B by B. Brent Gordon. CRM Monograph Series, 10. American Mathematical Society, Providence, RI, 1999.
CLAIRE VOISIN. – Hodge theory and complex algebraic geometry. Volume 76 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002.
CLAIRE VOISIN. – Hodge theory and complex algebraic geometry. {II}, Volume 77 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2003.
IMPA - Instituto de Matemática Pura e Aplicada ©
Os direitos sobre todo o material deste canal pertencem ao Instituto de Matemática Pura e Aplicada, sendo vedada a utilização total ou parcial do conteúdo sem autorização prévia e por escrito do referido titular, salvo nas hipóteses previstas na legislação vigente.
The rights over all the material in this channel belong to the Instituto de Matemática Pura e Aplicada, and it is forbidden to use all or part of it without prior written authorization from the above mentioned holder, except in the cases prescribed in the current legislation.