filmov
tv
Lecture 7/A Quantization in PyTorch, , Computer Vision for Embedded Systems
Показать описание
Purdue ECE 595 Computer Vision for Embedded Systems was a short (5 week, Fall 2022) online graduate course.
Yung-Hsiang Lu
computer vision
machine learning
pytorch
quantization
Рекомендации по теме
0:11:50
Lecture 7/A Quantization in PyTorch, , Computer Vision for Embedded Systems
1:23:26
Lecture 7 Advanced Quantization
1:09:20
Cornell ECE 5545: ML HW & Systems. Lecture 7: Quantization
0:04:36
Quantization in PyTorch 2.0 Export at PyTorch Conference 2022
0:20:27
54 - Quantization in PyTorch | Mixed Precision Training | Deep Learning | Neural Network
0:27:47
Leaner and Greener AI with Quantization in PyTorch - SURAJ SUBRAMANIAN
0:52:51
Deep Dive on PyTorch Quantization - Chris Gottbrath
0:10:43
EE545 (Week 6) 'Inference Quantization Review'
0:08:23
EE545 (Week 7) 'More on Quantisation aware Training' (Part I)
1:22:39
25 - PyTorch Lecture 1
0:10:58
EE545 (Week 6) More on Quantization and Quantization Aware Training (Part I)
0:28:39
Павел Плюснин - Квантование нейронных сетей
0:57:29
Lecture 14 - Distributed Training and Gradient Compression (Part II) | MIT 6.S965
1:10:54
Lecture 06 - Quantization (Part II) | MIT 6.S965
0:26:10
Lecture 8: Swin Transformer from Scratch in PyTorch - Relative Positional Embedding
0:11:18
EE545 (Week 6) More on Quantization and Quantization Aware Training (Part V)
0:11:30
What’s new in PyTorch 1.3 - Lin Qiao
0:07:58
Large Language Models explained briefly
0:56:30
PyTorch composability sync: quantization all the time
0:01:01
Adaptive Loss-Aware Quantization for Multi-Bit Networks
0:11:17
9.2 Quantization aware Training - Concepts
0:04:18
NNI v2.7 - Quantize your model with NNI
1:15:42
PyTorch Developer Conference 2018: Production & Research Sessions
0:19:46
Quantization vs Pruning vs Distillation: Optimizing NNs for Inference
visit shbcf.ru