filmov
tv
8.5) Unconditional vs Conditional Variance
Показать описание
6.1) Book Review: Mostly Harmless Econometrics
6.2) Mostly Harmless Econometrics: The Experimental Ideal
6.3) Book Review: Econometric Analysis of Cross Section and Panel Data
6.4) Why Economists created Econometrics methods rather than run Experiments?
6.5) Is Regression a Necessary Tool to Analyze Experimental Data?
6.6) Book Review: A Guide to Econometrics
6.7) Book Review: Econometrics
6.8) Introductory Books for Econometrics
6.9) Mathematical Exposition of Why Random Assignment Eliminates Selection Bias
6.10) Regression Analysis of Experiments
6.11) Field Centipedes
6.12) Bias Caused by Bad Controls
6.13) Structural Econometrics vs Experiment
6.14) Are Emily and Greg More Employable Than Lakisha and Jamal?
6.15) Times Series vs Cross Section vs Panel Data
7.1) Criteria for Estimators: Unbiasedness
7.2) Criteria for Estimators: Efficiency
7.3) Criteria for Estimators: Mean Square Error (MSE)
7.4) Asymptotic Properties of Estimators
7.5) Intuition: Maximum Likelihood Estimator
7.6) Simple vs Multiple Regression
7.7) T-Test vs F-Test: Joint Hypothesis
8.1) Law of Iterated Expectation
8.2) Geometric Interpretation of OLS
8.3) Ordinary Least Squares: Key Assumption
8.4) Conditional Independence Assumption (CIA)
8.5) Unconditional vs Conditional Variance
8.6) Homoskedastic vs Heteroskedasticity Errors
9.1) Minimize the Residual Sum of Squares (RSS)
9.2) OLS Matrix Notation
9.3) Projection Matrix: Idempotent and Symmetric
9.4) Orthogonal Projection Matrix
9.5) Derivation of R-Squared
9.6) Orthogonal Partitioned Regression
10.1) Unbiasedness of OLS
10.2) Consistency of OLS
10.3) OLS: Variance
10.4) Weighted Least Squares (WLS)
10.5) Generalized Least Squares (GLS)
11.1) Omitted Variable Bias: Proxy Solution
11.2) Measurement Error in the Dependent Variable
11.3) Measurement Error in an Explanatory Variable
11.4) Classical Errors-in-Variables and Attenuation Bias
12.1) Instrumental Variables (IV): Assumptions
12.2) Why Instrumental Variable?
12.3) Two-Stage Least Squares (2SLS)
12.4) Python: IV and 2SLS
13.1) Sharp Regression Discontinuity
13.2) Regression Discontinuity in Python
13.3) Regression Discontinuity (RD)
13.4) Fuzzy Regression Discontinuity (FRD)
13.5) Fuzzy vs Sharp RD
13.6) Python Fuzzy RD
14.1) First-Difference Estimator
14.2) Algebra of Difference-in-Differences (DID)
14.3) Python: Diff-in-Diff (DD)
14.4) Quasi-Experiment Diff-in-Diff (DID)
15.1) Fixed Effects (FE): Time-Demeaned
15.2) Random Effects (RE) vs Fixed Effects (FE)
15.3) Random Effects (RE) is Generalized Least Squares (GLS)
15.4) Covariance Matrix: Random Effects (RE)
15.5) Random Effects as a Weighted Average of OLS and FE
15.6) Python: Fixed and Random Effects
6.2) Mostly Harmless Econometrics: The Experimental Ideal
6.3) Book Review: Econometric Analysis of Cross Section and Panel Data
6.4) Why Economists created Econometrics methods rather than run Experiments?
6.5) Is Regression a Necessary Tool to Analyze Experimental Data?
6.6) Book Review: A Guide to Econometrics
6.7) Book Review: Econometrics
6.8) Introductory Books for Econometrics
6.9) Mathematical Exposition of Why Random Assignment Eliminates Selection Bias
6.10) Regression Analysis of Experiments
6.11) Field Centipedes
6.12) Bias Caused by Bad Controls
6.13) Structural Econometrics vs Experiment
6.14) Are Emily and Greg More Employable Than Lakisha and Jamal?
6.15) Times Series vs Cross Section vs Panel Data
7.1) Criteria for Estimators: Unbiasedness
7.2) Criteria for Estimators: Efficiency
7.3) Criteria for Estimators: Mean Square Error (MSE)
7.4) Asymptotic Properties of Estimators
7.5) Intuition: Maximum Likelihood Estimator
7.6) Simple vs Multiple Regression
7.7) T-Test vs F-Test: Joint Hypothesis
8.1) Law of Iterated Expectation
8.2) Geometric Interpretation of OLS
8.3) Ordinary Least Squares: Key Assumption
8.4) Conditional Independence Assumption (CIA)
8.5) Unconditional vs Conditional Variance
8.6) Homoskedastic vs Heteroskedasticity Errors
9.1) Minimize the Residual Sum of Squares (RSS)
9.2) OLS Matrix Notation
9.3) Projection Matrix: Idempotent and Symmetric
9.4) Orthogonal Projection Matrix
9.5) Derivation of R-Squared
9.6) Orthogonal Partitioned Regression
10.1) Unbiasedness of OLS
10.2) Consistency of OLS
10.3) OLS: Variance
10.4) Weighted Least Squares (WLS)
10.5) Generalized Least Squares (GLS)
11.1) Omitted Variable Bias: Proxy Solution
11.2) Measurement Error in the Dependent Variable
11.3) Measurement Error in an Explanatory Variable
11.4) Classical Errors-in-Variables and Attenuation Bias
12.1) Instrumental Variables (IV): Assumptions
12.2) Why Instrumental Variable?
12.3) Two-Stage Least Squares (2SLS)
12.4) Python: IV and 2SLS
13.1) Sharp Regression Discontinuity
13.2) Regression Discontinuity in Python
13.3) Regression Discontinuity (RD)
13.4) Fuzzy Regression Discontinuity (FRD)
13.5) Fuzzy vs Sharp RD
13.6) Python Fuzzy RD
14.1) First-Difference Estimator
14.2) Algebra of Difference-in-Differences (DID)
14.3) Python: Diff-in-Diff (DD)
14.4) Quasi-Experiment Diff-in-Diff (DID)
15.1) Fixed Effects (FE): Time-Demeaned
15.2) Random Effects (RE) vs Fixed Effects (FE)
15.3) Random Effects (RE) is Generalized Least Squares (GLS)
15.4) Covariance Matrix: Random Effects (RE)
15.5) Random Effects as a Weighted Average of OLS and FE
15.6) Python: Fixed and Random Effects