Integral of e^x cos(x)

preview_player
Показать описание
Tabular Integration of ∫e^x cos(x) dx:

Differentiate (D) e^x and Integrate (I) cos(x) repeatedly:
D: e^x, e^x, e^x, e^x
I: cos(x), -sin(x), -cos(x), sin(x)

Multiply diagonally and alternate signs:
(+) e^x * cos(x), (-) e^x * (-sin(x)), (+) e^x * (-cos(x)), (-) e^x * sin(x)

Add the products and their signs:
∫e^x cos(x) dx = e^x cos(x) + e^x sin(x) - e^x cos(x) - e^x sin(x) + C

Simplify the expression:
∫e^x cos(x) dx = (e^x)(cos(x) + sin(x)) + C

Remember to include a constant of integration (C) at the end.
Please visit our Merch Stores and help support the spreading of knowledge:)
Our T-Shirt Merch:
Our Amazon Store for Awesome Merch too:
Рекомендации по теме
Комментарии
Автор

thx u, u helped me very well, kss from Argentina :)

Lena-ddvx