filmov
tv
How to Append Two Data Frames | Data Frame | Pandas | Pandas Tutorial

Показать описание
To append two data frames in Python, you can use the concat() function from the pandas library. The concat() function combines two or more data frames into a single data frame by stacking them vertically or horizontally.
Here's an example of how to use concat() function to append two data frames vertically:
import pandas as pd
# create two data frames
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'A': [4, 5, 6], 'B': [7, 8, 9]})
# append two data frames vertically
print(df_concat)
In this example, we create two data frames df1 and df2 with the same column names and append them vertically using concat() function with ignore_index=True parameter to reset the index of the concatenated data frame.
To append two data frames horizontally, you need to set the axis parameter of concat() function to 1. Here's an example:
import pandas as pd
# create two data frames
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'C': [7, 8, 9], 'D': [10, 11, 12]})
# append two data frames horizontally
print(df_concat)
In this example, we create two data frames df1 and df2 with different column names and append them horizontally using concat() function with axis=1 parameter to stack them side by side.
code snippet is given below
import pandas as pd
import numpy as np
df = pd.DataFrame([[1,2],[3,4]],columns = ['a','b'])
df2 = pd.DataFrame([[5,6],[7,8]],columns=['a','b'])
print (df)
print(df2)
print(df3)
print(df4)
@ParagDhawan
=============================================================================
Link for Tutorial Series
Jupyter Notebook Tutorial Series:-
Python Tutorial Series:-
Python Assignments and Objective Questions:-
Tech. Videos By Parag Dhawan;-
Object-Oriented Programming in Python:-
File Handling in Python:-
Exception Handling in Python:-
NumPy Tutorial Series:-
=============================================================================
Feel free to connect and ask your queries:-
=============================================================================
Show your support by Subscribing to the channel:-
=============================================================================
#ParagDhawan
#Pandas
#DataScience
#DataAnalysis
#PandasTutorial
#PandasCourse
#Python3
#Python
#PythonProgramming
============================================================
How to Record Your Screen and make a tutorial video or demo video: -
============================================================
Here's an example of how to use concat() function to append two data frames vertically:
import pandas as pd
# create two data frames
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'A': [4, 5, 6], 'B': [7, 8, 9]})
# append two data frames vertically
print(df_concat)
In this example, we create two data frames df1 and df2 with the same column names and append them vertically using concat() function with ignore_index=True parameter to reset the index of the concatenated data frame.
To append two data frames horizontally, you need to set the axis parameter of concat() function to 1. Here's an example:
import pandas as pd
# create two data frames
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'C': [7, 8, 9], 'D': [10, 11, 12]})
# append two data frames horizontally
print(df_concat)
In this example, we create two data frames df1 and df2 with different column names and append them horizontally using concat() function with axis=1 parameter to stack them side by side.
code snippet is given below
import pandas as pd
import numpy as np
df = pd.DataFrame([[1,2],[3,4]],columns = ['a','b'])
df2 = pd.DataFrame([[5,6],[7,8]],columns=['a','b'])
print (df)
print(df2)
print(df3)
print(df4)
@ParagDhawan
=============================================================================
Link for Tutorial Series
Jupyter Notebook Tutorial Series:-
Python Tutorial Series:-
Python Assignments and Objective Questions:-
Tech. Videos By Parag Dhawan;-
Object-Oriented Programming in Python:-
File Handling in Python:-
Exception Handling in Python:-
NumPy Tutorial Series:-
=============================================================================
Feel free to connect and ask your queries:-
=============================================================================
Show your support by Subscribing to the channel:-
=============================================================================
#ParagDhawan
#Pandas
#DataScience
#DataAnalysis
#PandasTutorial
#PandasCourse
#Python3
#Python
#PythonProgramming
============================================================
How to Record Your Screen and make a tutorial video or demo video: -
============================================================