11. withColumnRenamed() usage in PySpark | Azure Databricks | Azure Synapse Analytics

preview_player
Показать описание
In this video, I discussed about changing existing column name in dataframe using pyspark.

Link for PySpark Playlist:

Link for PySpark Real Time Scenarios Playlist:

Link for Azure Synapse Analytics Playlist:

Link to Azure Synapse Real Time scenarios Playlist:

Link for Azure Data bricks Play list:

Link for Azure Functions Play list:

Link for Azure Basics Play list:

Link for Azure Data factory Play list:

Link for Azure Data Factory Real time Scenarios

Link for Azure Logic Apps playlist

#PySpark #Spark #databricks #azuresynapse #synapse #notebook #azuredatabricks #PySparkcode #dataframe #WafaStudies #maheer
Рекомендации по теме
Комментарии
Автор

Clear cut explanation brother (really we thank full to you)

hemakshuduk
Автор

Awesome👍. Straight to the point. Thanks Brother

sumanthb
Автор

I have 15 columns should be renamed
..is this function will work or any other procedure

nshcreations
Автор

Even if we keep df only while using rename function then also it will work. We don't need to create another dataframe as the rename function will get overwritten on the same dataframe i.e. df

df= spark.createDataFrame(data=data, schema=column)
df= df.withColumnRenamed('salary', 'salary_amount')
df.show()

TheRockAbhi