Wolfram alpha fails to answer this (If you type it directly)

preview_player
Показать описание
#brainexercise #matholympics
Wolfram alpha fails to answer this (If you type it directly)

Comment your answer in the comment section down below
Рекомендации по теме
Комментарии
Автор

If we don't convert the original in the form a+b=3 and let it be as a-b=3 then we must use the product and calculate a^3-b^3 from also (a^2+b^2)= (a-b)^2+2ab and then a^4+b^4= (a^2+b^2)^2- 2•a^2•b^2 etc ....but calculations having a+b instead of a-b, are easier.

sarantiskalaitzis
Автор

🎉I think it's easier to use that (a^3+b^3)•(a^4+b^4)= a^7+a^3•b^4+b^3•a^4+b^7 =a^7+b^7+a^3•b^3•(a+b)= a^7+b^7+(ab)^3•(a+b)= 129+3•(ab)^3 "(1)". Then we recall that a+b=3 so 3ab•3 =27-9ab. "(2)". Also a^4+b^4= (a^2+b^2)^2-2•a^2•b^2= [(a+b)^2-2•ab]^2-2(ab)^2= 129+ (9-2ab)^2-2(ab)^2. Let ab=t. Then (1) becomes (27-9t)•[(9-2t)^2-2t^2)= 129+3•t^3. Finally we get 3rd grade equation ..
t^3- 18t^2+81t-98 =0. Etc..

sarantiskalaitzis
Автор

{c=4-a-b, a=1-b/2±√(-3/4b²+b-2),
0=(b³-3b²+2, 5b-15, 5)²+25, 75(b-125/103)²-11760/103{127, 45±26, 51i}

fhffhff
Автор

❤ nice problem
let a^7 = x+64 & b^7 = 65 - x
a+b = 3, a^7+b^7 = 129
let us consider the identity
(a+b)^7 - a^7 - b^7 = 7ab(a+b)(a°2+ab+b^2)^2
3^7 - 129 = 21t (9 - t)^2 { where t = ab also (a+b)^2 = 3^2 gives a^2+b^2 = 9 - 2t }
3^6 - 43 = 7t (t^2 - 18 t+ 81)
t^3 - 18t^2+81t - 98 = 0
(t - 2)(t^2 - 16t+49) = 0
t = 2, 8+/- √15
a+b = 3, ab = 2 gives a = 2, b = 1 or a = 1, b= 2
a^7 = x+64 hence
x = 64, - 63
from second case of ab we get imaginary roots.

raghvendrasingh
Автор

(2022)^ 22 divided by 7 find remainder

Please solve this

VijayKumar-rwpt
visit shbcf.ru