Cambridge University Aptitude Test | Can You Pass Cambridge Aptitude Test?

preview_player
Показать описание
Hello, here is a Cambridge University Aptitude Test.

Thanks for watching friends please 🙏🙏🙏

#cambridge #cambridgemathematics #cambridgetest #algebra #algebratricks #school #cambridgeenglish #cambridgema #education #trending #mathematics #mathtricks #solution #educational #educationalvideo #educationalvideos #educationalvideos #educationmatters #educationalcontent #trending #trendingmaths #trendingvideo #trendingstatus #mathematics #mathstricks #math #mathematicsclasses #mathematic #solver #school #solution #solutionsmaster #solutions #sol #matholympiad #mathshorts #mathproblem #mathpuzzle #mathproblems #how #howto #onlineclasses #online #onlinelearning #common #commonentranceexam #testy #top #top10 #toptrending #onlinemaths #onlineclass #onlinemathstv
Рекомендации по теме
Комментарии
Автор

y^3-x^3=91 x = -6, y = -5 x = -4, y = 3 x = -3, y = 4 x = 5, y = 6

RyanLewis-Johnson-wqxs
Автор

What an excellent equation. Can be satisfied with 4 different sets of answer . If only world leaders knew about this equation, there would have been no war today. Thank you sir.

MulaSlayer
Автор

(x, y)=(6, -5), (-4, 3), (-3, 4), (5, 6) final answer

RyanLewis-Johnson-wqxs
Автор

Aprendi que na equação a.b = 0, a = 0 ou b = 0. Voçe resolveu como a = 0 e b = 0, discordo. (I learned that in the equation a.b = 0, a = 0 or b = 0. You solved it as a = 0 and b = 0, I disagree.)

souzasilva
Автор

As a professional, you should have known that (x-y) is less than (x^2+xy+y^2). Hence, there are only two possible cases in which (x-y) takes the smaller value while x^2+xy+y^2 takes the larger value. No need for cases 3 and 4 coz they are invalid.

SamuelDonald-pruu
join shbcf.ru