filmov
tv
Harvard AM205 video 5.3 - Gershgorin circle theorem & eigenvalue sensitivity
Показать описание
Harvard Applied Math 205 is a graduate-level course on scientific computing and numerical methods. This video continues Unit 5 of the course on eigenvalue problems. It introduces several useful results for bounding eigenvalues and looking at their sensitivity to matrix perturbations. The Gershgorin circle theorem is derived, which constrains eigenvalues to be within a collection of disks in the complex plane. Then the Bauer–Fike theorem and Weyl's theorem are introduced, to bound how much eigenvalues will move when a matrix is perturbed.
Harvard AM205 video 3.5 - Finite-difference approximations
Harvard AM205 video 5.3 - Gershgorin circle theorem & eigenvalue sensitivity
harvard am205 video 5 10 conjugate gradient method
Harvard AM205 video 3.9 - ODE convergence
Harvard AM205 video 5.2 - Eigenvalue definitions
Harvard AM205 video 3.2 - Numerical integration
Harvard AM205 video 4.3 - Newton and secant methods
Harvard AM205 video 5.1 - Introduction to eigenvalue problems
Harvard AM205 video 0.1 - Introduction
Harvard AM205 video 3.15 - ODE boundary value problems
Harvard AM205 video 2.5 - LU pivoting and Cholesky factorization
Harvard AM205 video 5.10 - Conjugate gradient method
Harvard AM205 video 1.7 - Underdetermined least squares
Harvard AM205 video 0.3 - Numerical sensitivity
Harvard AM205 video 3.10 - ODE stability
Harvard AM205 video 3.19 - Accuracy and stability for finite-difference schemes
Harvard AM205 video 3.16 - Partial differential equations
Harvard AM205 video 1.7 - Underdetermined least squares
Harvard AM205 video 3.14 - Multistep methods
Harvard AM205 video 2.13 - An example of PCA
Harvard AM205 video 3.12 - ODE error estimation
Harvard AM205 video 3.7 - ODE initial value problems
Harvard AM205 video 4.5 - Conditions for a global minimum
Harvard AM205 video 1.3 - Function approximation
Комментарии