filmov
tv
PyGame Tutorial for Beginners | PyGame Python Tutorial For Beginners | Python PyGame | Edureka

Показать описание
This Edureka video on PyGame Tutorial covers all the basic aspects of creating and running your own simple game. It establishes the concepts needed like images, sounds, geometry etc needed to build your own games using Python. Below is the timestamp of this PyGame tutorial video:
00:35 Agenda
02:21 What is PyGame?
03:17 Installing PyGame
04:30 Anatomy of PyGame
11:36 Working with Images
14:20 Working with Sounds
18:18 Working with Geometric Drawings
23:34 Working with Fonts and Text
27:36 Understanding Input Methods
29:16 Understanding Scene Logic
🔴 𝐄𝐝𝐮𝐫𝐞𝐤𝐚 𝐎𝐧𝐥𝐢𝐧𝐞 𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐚𝐧𝐝 𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧𝐬
🔴 𝐄𝐝𝐮𝐫𝐞𝐤𝐚 𝐑𝐨𝐥𝐞-𝐁𝐚𝐬𝐞𝐝 𝐂𝐨𝐮𝐫𝐬𝐞𝐬
🔴 𝐄𝐝𝐮𝐫𝐞𝐤𝐚 𝐔𝐧𝐢𝐯𝐞𝐫𝐬𝐢𝐭𝐲 𝐏𝐫𝐨𝐠𝐫𝐚𝐦𝐬
🌕 Artificial and Machine Learning PGD with E&ICT Academy
#PythonTutorial #PythonTraining #PythonProgramming #PythonEdureka #Edureka
How it Works?
1. This is a 5 Week Instructor-led Online Course,40 hours of assignment and 20 hours of project work
2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course.
3. At the end of the training, you will be working on a real-time project for which we will provide you a Grade and a Verifiable Certificate!
- - - - - - - - - - - - - - - - -
About the Course
Edureka’s Machine Learning Course using Python is designed to make you grab the concepts of Machine Learning. The Machine Learning training will provide a deep understanding of Machine Learning and its mechanism. As a Data Scientist, you will be learning the importance of Machine Learning and its implementation in Python programming language. Furthermore, you will be taught Reinforcement Learning which in turn is an important aspect of Artificial Intelligence. You will be able to automate real-life scenarios using Machine Learning Algorithms. Towards the end of the course, we will be discussing various practical use cases of Machine Learning in Python programming language to enhance your learning experience.
After completing this Machine Learning Certification Training using Python, you should be able to:
Gain insight into the 'Roles' played by a Machine Learning Engineer
Automate data analysis using python
Describe Machine Learning
Work with real-time data
Learn tools and techniques for predictive modeling
Discuss Machine Learning algorithms and their implementation
Validate Machine Learning algorithms
Explain Time Series and it’s related concepts
Gain expertise to handle business in future, living the present
- - - - - - - - - - - - - - - - - - -
Why learn Machine Learning with Python?
Data Science is a set of techniques that enable the computers to learn the desired behavior from data without explicitly being programmed. It employs techniques and theories drawn from many fields within the broad areas of mathematics, statistics, information science, and computer science. This course exposes you to different classes of machine learning algorithms like supervised, unsupervised and reinforcement algorithms. This course imparts you the necessary skills like data pre-processing, dimensional reduction, model evaluation and also exposes you to different machine learning algorithms like regression, clustering, decision trees, random forest, Naive Bayes and Q-Learning.
00:35 Agenda
02:21 What is PyGame?
03:17 Installing PyGame
04:30 Anatomy of PyGame
11:36 Working with Images
14:20 Working with Sounds
18:18 Working with Geometric Drawings
23:34 Working with Fonts and Text
27:36 Understanding Input Methods
29:16 Understanding Scene Logic
🔴 𝐄𝐝𝐮𝐫𝐞𝐤𝐚 𝐎𝐧𝐥𝐢𝐧𝐞 𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐚𝐧𝐝 𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧𝐬
🔴 𝐄𝐝𝐮𝐫𝐞𝐤𝐚 𝐑𝐨𝐥𝐞-𝐁𝐚𝐬𝐞𝐝 𝐂𝐨𝐮𝐫𝐬𝐞𝐬
🔴 𝐄𝐝𝐮𝐫𝐞𝐤𝐚 𝐔𝐧𝐢𝐯𝐞𝐫𝐬𝐢𝐭𝐲 𝐏𝐫𝐨𝐠𝐫𝐚𝐦𝐬
🌕 Artificial and Machine Learning PGD with E&ICT Academy
#PythonTutorial #PythonTraining #PythonProgramming #PythonEdureka #Edureka
How it Works?
1. This is a 5 Week Instructor-led Online Course,40 hours of assignment and 20 hours of project work
2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course.
3. At the end of the training, you will be working on a real-time project for which we will provide you a Grade and a Verifiable Certificate!
- - - - - - - - - - - - - - - - -
About the Course
Edureka’s Machine Learning Course using Python is designed to make you grab the concepts of Machine Learning. The Machine Learning training will provide a deep understanding of Machine Learning and its mechanism. As a Data Scientist, you will be learning the importance of Machine Learning and its implementation in Python programming language. Furthermore, you will be taught Reinforcement Learning which in turn is an important aspect of Artificial Intelligence. You will be able to automate real-life scenarios using Machine Learning Algorithms. Towards the end of the course, we will be discussing various practical use cases of Machine Learning in Python programming language to enhance your learning experience.
After completing this Machine Learning Certification Training using Python, you should be able to:
Gain insight into the 'Roles' played by a Machine Learning Engineer
Automate data analysis using python
Describe Machine Learning
Work with real-time data
Learn tools and techniques for predictive modeling
Discuss Machine Learning algorithms and their implementation
Validate Machine Learning algorithms
Explain Time Series and it’s related concepts
Gain expertise to handle business in future, living the present
- - - - - - - - - - - - - - - - - - -
Why learn Machine Learning with Python?
Data Science is a set of techniques that enable the computers to learn the desired behavior from data without explicitly being programmed. It employs techniques and theories drawn from many fields within the broad areas of mathematics, statistics, information science, and computer science. This course exposes you to different classes of machine learning algorithms like supervised, unsupervised and reinforcement algorithms. This course imparts you the necessary skills like data pre-processing, dimensional reduction, model evaluation and also exposes you to different machine learning algorithms like regression, clustering, decision trees, random forest, Naive Bayes and Q-Learning.
Комментарии