Let \( \lambda \) and \( \alpha \) be real. Find the set of all val...

preview_player
Показать описание
Let \( \lambda \) and \( \alpha \) be real. Find the set of all values of \( \lambda \) for which the system of linear equations
\[
\begin{aligned}
\lambda x+(\sin \alpha) y+(\cos \alpha) z &=0 \\
x+(\cos \alpha) y+(\sin \alpha) z &=0 \\
-x+(\sin \alpha) y-(\cos \alpha) z &=0
\end{aligned}
\]
and
has a non-trivial solution.
For \( \lambda=1 \), find all values of \( \alpha \).
\( (1993,5 \mathrm{M}) \)
Рекомендации по теме