filmov
tv
From Autoencoders to Variational Autoencoders: Improving the Loss Function

Показать описание
Autoencoders have a number of limitations for generative tasks. That’s why they need a power-up to convert them into Variational Autoencoders. In this video, I explain the second step to transform a vanilla autoencoder into a VAE. Specifically, I discuss how VAEs add a regularization term to their loss function, implemented through the Kullback-Leibler Divergence.
===============================
Slide deck:
Join The Sound Of AI Slack community:
===============================
Interested in hiring me as a consultant/freelancer?
Follow Valerio on Facebook:
Connect with Valerio on Linkedin:
Follow Valerio on Twitter:
===============================
Content
0:00 Intro
0:44 Autoencoder loss
1:42 VAE loss
3:08 Kullback-Leibler Divergence
8:02 Weighting the loss function
9:45 What's next?
===============================
Slide deck:
Join The Sound Of AI Slack community:
===============================
Interested in hiring me as a consultant/freelancer?
Follow Valerio on Facebook:
Connect with Valerio on Linkedin:
Follow Valerio on Twitter:
===============================
Content
0:00 Intro
0:44 Autoencoder loss
1:42 VAE loss
3:08 Kullback-Leibler Divergence
8:02 Weighting the loss function
9:45 What's next?
Variational Autoencoders
What are Autoencoders?
Variational Autoencoders | Generative AI Animated
From Autoencoders to Variational Autoencoders: Improving the Encoder
Autoencoders | Deep Learning Animated
Understanding Variational Autoencoders (VAEs) | Deep Learning
From Autoencoders to Variational Autoencoders: Improving the Loss Function
What are Variational Autoencoders( data science made easy)
How to Learn AI in 2025: Beginner To Intermediate Study Guide | AI Bros Pod Live EP 26
Variational Autoencoder - Model, ELBO, loss function and maths explained easily!
Autoencoders Vs Variational Autoencoders | Deep Learning Tutorial | NLP | DataMites
Variational Autoencoders - EXPLAINED!
Vector-Quantized Variational Autoencoders (VQ-VAEs) | Deep Learning
Deep Learning Lecture 11.1 - Variational Autoencoders
Variational Autoencoders #autoencoder
Supervised Variational Autoencoders
What are Variational Autoencoders (VAEs)? [2023]
Autoencoders - EXPLAINED
Variational Autoencoder (VAE) Latent Space Visualization
Denoising and Variational Autoencoders
PyData Tel Aviv Meetup: Generative models And Variational AutoEncoder explained - Shai Harel
From Variational to Deterministic Autoencoders
Variational Autoencoder (VAE)
Complete Variational Autoencoder Walkthrough! theory, code and results
Комментарии