Variational Autoencoders #autoencoder

preview_player
Показать описание
Variational autoencoders (VAEs) are specific types of autoencoders that learn to encode input data into a latent space involving probability, "organizing the space".

This allows for the generation of new data samples that are consistent and useful.

Unlike traditional autoencoders, which aim to map inputs to a deterministic latent space, VAEs learn a distribution over the latent variables.

This lets VAEs generate high quality data samples of new data, while standard autoencoders only try to reconstruct inputs with high accuracy.

C: deepia

Join our Al community for more posts like this @Giffah_Alexander

#deeplearning #machinelearning #datascience #Im #programming #chatgpt #mathematics #education #datascientist #data #neuralnetworks #computerscience #computervision #ml #robotics
Рекомендации по теме
Комментарии
Автор

The name of the real channel from which this video is a part of, deepia

The_Wolveerine
welcome to shbcf.ru