filmov
tv
Recurrent Neural Network (RNN) Tutorial | RNN LSTM Tutorial | Deep Learning Tutorial | Simplilearn
Показать описание
This Recurrent Neural Network tutorial will help you understand what is a neural network, what are the popular neural networks, why we need recurrent neural network, what is a recurrent neural network, how does a RNN work, what is vanishing and exploding gradient problem, what is LSTM and you will also see a use case implementation of LSTM (Long short term memory). Neural networks used in Deep Learning consists of different layers connected to each other and work on the structure and functions of the human brain. It learns from huge volumes of data and used complex algorithms to train a neural net. The recurrent neural network works on the principle of saving the output of a layer and feeding this back to the input in order to predict the output of the layer. Now lets deep dive into this video and understand what is RNN and how does it actually work.
Below topics are explained in this recurrent neural networks tutorial:
1. What is a neural network?
2. Popular neural networks?
3. Why recurrent neural network?
4. What is a recurrent neural network?
5. How does an RNN work?
6. Vanishing and exploding gradient problem
7. Long short term memory (LSTM)
8. Use case implementation of LSTM
#DeepLearning #Datasciencecourse #DataScience #SimplilearnMachineLearning #DeepLearningCourse
Simplilearn’s Deep Learning course will transform you into an expert in deep learning techniques using TensorFlow, the open-source software library designed to conduct machine learning & deep neural network research. With our deep learning course, you'll master deep learning and TensorFlow concepts, learn to implement algorithms, build artificial neural networks and traverse layers of data abstraction to understand the power of data and prepare you for your new role as deep learning scientist.
You can gain in-depth knowledge of Deep Learning by taking our Deep Learning certification training course. With Simplilearn’s Deep Learning course, you will prepare for a career as a Deep Learning engineer as you master concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, and hands-on modeling to develop algorithms. Those who complete the course will be able to:
1. Understand the concepts of TensorFlow, its main functions, operations and the execution pipeline
2. Implement deep learning algorithms, understand neural networks and traverse the layers of data abstraction which will empower you to understand data like never before
3. Master and comprehend advanced topics such as convolutional neural networks, recurrent neural networks, training deep networks and high-level interfaces
4. Build deep learning models in TensorFlow and interpret the results
5. Understand the language and fundamental concepts of artificial neural networks
6. Troubleshoot and improve deep learning models
There is booming demand for skilled deep learning engineers across a wide range of industries, making this deep learning course with TensorFlow training well-suited for professionals at the intermediate to advanced level of experience. We recommend this Deep Learning online course particularly for the following professionals:
1. Software engineers
2. Data scientists
3. Data analysts
4. Statisticians with an interest in deep learning
For more information about Simplilearn’s courses, visit:
🔥🔥 Interested in Attending Live Classes? Call Us: IN - 18002127688 / US - +18445327688
Комментарии