Math Olympiad | A Nice Arithmetic Sequence Progression | VIJAY Maths

preview_player
Показать описание
Also Watch our Most Viral Interesting Math Olympiad Problem:

Subscribe to our channel and press the bell icon 🔔 for daily Brainstorming Math videos →

*****************************************************************************

#matholympiad #maths #arithmetic #arithmeticsequence #arithmeticseries
Рекомендации по теме
Комментарии
Автор

{7x+7x ➖ }=14x^2 +{10x+10x }={34x^4+26x^2}=60x^6 +{16x+16x ➖ ➖ }={92x^8+38x^2}=130x^10 +{22x+22x ➖}={130x^10+44x^2 }=174x^12 {25x+25x ➖ }={ 10^20^4^6x^14 10^2^104^6x^2^7 2^5^2^2^54^3^2x^2^7 1^1^1^1^1^2^2^3^2x^2^7^1 1^1^1^1x^2^1^1 x^2^1 (x ➖ 2x+1).

RealQinnMalloryu
Автор

Arithmetic progression. The first term is. 7 rthe common difference is. 3. Last term is X. Their Sum 282. Formula for the last term is a+(n-1)d. Applying this you get 7+(n-1)d. In our case ht is x. So the last term is 7+(x-1)3. Last term is 7+3x-3=3x+4. .Formulafor the sum of an A.P. is x/2(a+L) L being the last term..So we have x/2×3+(3x+4). =282. Expanding 3x/2(3x+4) .=282. 9x^2+6x-282=0. Dividing by 3. We get 3x^2+2x-94. =0.

pas