filmov
tv
Why Do Sporadic Groups Exist?

Показать описание
⬣ LINKS ⬣
Permutation Group Visualiser by Tesseralis:
⬣ ABOUT ⬣
The concept of symmetry can be formalised through the study of groups. Groups can be constructed from simple groups, and during an incredible effort throughout the 20th century, all simple groups have been classified. But the classification is messy -- there are several infinite families and then 26 left-over groups which don't fit any of the patterns. In this video, we explore some of these so-called Sporadic Groups and why they exist.
⬣ TIMESTAMPS ⬣
00:00 - Intro and Housekeeping
01:56 - Introduction to Group Theory
05:13 - Classifying Groups
10:04 - Transitive Groups
15:06 - M24
19:20 - The Mathieu Family
26:29 - Why Sporadic Groups Exist
⬣ INVESTIGATORS ⬣
Nothing for you here. Sorry!
⬣ REFERENCES ⬣
[1] É Mathieu, Sur la fonction cinq fois transitive de 24 quantitiés. Journal de mathématiques pures et appliquées 18 (1873) pp. 25-46.
[2] E Witt, Die 5-fach transitiven Gruppen von Mathieu. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 12: 256–264
[3] P Cameron, Projective and polar spaces. (1992) University of London, Queen Mary and Westfield College.
[4] P Cameron, Permtation groups. (1999) London Mathematical Society Student Texts, Cambridge University Press.
[5] W Burnside, Theory of Groups of Finite Order. (1911) Cambridge University P
[7] P Duhem, Emile Mathieu, his life and works. Bull. New York Math. Soc. 1(7): 156-168 (April 1892).
[8] Aimo Tietäväinen, On the nonexistence of perfect codes over finite fields. SIAM Journal on Applied Mathematics, 24(1), 88–96.
⬣ CREDITS ⬣
Music by Danjel Zambo.
Intro music by Tobias Voigt.
Image Credits
Molecule
Periodic table
Tesseract
Rings
Rack
Magma
Lattice
Knot (quandle)
Ernst Witt
Bernd Fischer
Robert Griess
Fisher-Price Monster
E8 Diagram
Circular arrows
G2 Diagram
F4 Diagram
E6 Diagram
E7 Diagram
William Burnside
Platonic Solids
Explosion
Explosion
Saturn, Jupiter timelapse, Voyager 1
NASA Public Domain Image
Permutation Group Visualiser by Tesseralis:
⬣ ABOUT ⬣
The concept of symmetry can be formalised through the study of groups. Groups can be constructed from simple groups, and during an incredible effort throughout the 20th century, all simple groups have been classified. But the classification is messy -- there are several infinite families and then 26 left-over groups which don't fit any of the patterns. In this video, we explore some of these so-called Sporadic Groups and why they exist.
⬣ TIMESTAMPS ⬣
00:00 - Intro and Housekeeping
01:56 - Introduction to Group Theory
05:13 - Classifying Groups
10:04 - Transitive Groups
15:06 - M24
19:20 - The Mathieu Family
26:29 - Why Sporadic Groups Exist
⬣ INVESTIGATORS ⬣
Nothing for you here. Sorry!
⬣ REFERENCES ⬣
[1] É Mathieu, Sur la fonction cinq fois transitive de 24 quantitiés. Journal de mathématiques pures et appliquées 18 (1873) pp. 25-46.
[2] E Witt, Die 5-fach transitiven Gruppen von Mathieu. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 12: 256–264
[3] P Cameron, Projective and polar spaces. (1992) University of London, Queen Mary and Westfield College.
[4] P Cameron, Permtation groups. (1999) London Mathematical Society Student Texts, Cambridge University Press.
[5] W Burnside, Theory of Groups of Finite Order. (1911) Cambridge University P
[7] P Duhem, Emile Mathieu, his life and works. Bull. New York Math. Soc. 1(7): 156-168 (April 1892).
[8] Aimo Tietäväinen, On the nonexistence of perfect codes over finite fields. SIAM Journal on Applied Mathematics, 24(1), 88–96.
⬣ CREDITS ⬣
Music by Danjel Zambo.
Intro music by Tobias Voigt.
Image Credits
Molecule
Periodic table
Tesseract
Rings
Rack
Magma
Lattice
Knot (quandle)
Ernst Witt
Bernd Fischer
Robert Griess
Fisher-Price Monster
E8 Diagram
Circular arrows
G2 Diagram
F4 Diagram
E6 Diagram
E7 Diagram
William Burnside
Platonic Solids
Explosion
Explosion
Saturn, Jupiter timelapse, Voyager 1
NASA Public Domain Image
Комментарии