filmov
tv
Inverse Laplace Question Solved L—[s+2/s²-2s+17]
![preview_player](https://i.ytimg.com/vi/dudi7UCiVSI/maxresdefault.jpg)
Показать описание
Certainly! Here are 10 quadratic functions for which you can find the inverse Laplace transform:
1. \( F(s) = \frac{1}{s^2 + 4s + 3} \)
2. \( F(s) = \frac{3s + 2}{s^2 + 5s + 6} \)
3. \( F(s) = \frac{s^2 + 2s + 1}{s^2 + 4s + 4} \)
4. \( F(s) = \frac{2s^2 + 3s + 1}{s^2 + 6s + 9} \)
5. \( F(s) = \frac{s^2 + 7s + 10}{s^2 + 8s + 16} \)
6. \( F(s) = \frac{4s^2 + 6s + 2}{s^2 + 3s + 2} \)
7. \( F(s) = \frac{s^2 + 4s + 7}{s^2 + 2s + 5} \)
8. \( F(s) = \frac{s^2 + 9s + 20}{s^2 + 6s + 25} \)
9. \( F(s) = \frac{3s^2 + 5s + 2}{s^2 + 7s + 12} \)
10. \( F(s) = \frac{s^2 + 6s + 8}{s^2 + 4s + 8} \)
Feel free to choose any of these, and I can guide you through finding their inverse Laplace transforms.
1. \( F(s) = \frac{1}{s^2 + 4s + 3} \)
2. \( F(s) = \frac{3s + 2}{s^2 + 5s + 6} \)
3. \( F(s) = \frac{s^2 + 2s + 1}{s^2 + 4s + 4} \)
4. \( F(s) = \frac{2s^2 + 3s + 1}{s^2 + 6s + 9} \)
5. \( F(s) = \frac{s^2 + 7s + 10}{s^2 + 8s + 16} \)
6. \( F(s) = \frac{4s^2 + 6s + 2}{s^2 + 3s + 2} \)
7. \( F(s) = \frac{s^2 + 4s + 7}{s^2 + 2s + 5} \)
8. \( F(s) = \frac{s^2 + 9s + 20}{s^2 + 6s + 25} \)
9. \( F(s) = \frac{3s^2 + 5s + 2}{s^2 + 7s + 12} \)
10. \( F(s) = \frac{s^2 + 6s + 8}{s^2 + 4s + 8} \)
Feel free to choose any of these, and I can guide you through finding their inverse Laplace transforms.