filmov
tv
NASA | Black Hole Launches 'Bullets' of Gas.
Показать описание
Using observations from NASA's Rossi X-ray Timing Explorer (RXTE) satellite and the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) radio telescope, an international team of astronomers has identified the moment when a black hole in our galaxy launched superfast knots of gas into space.
Racing outward at about one-quarter the speed of light, these "bullets" of ionized gas are thought to arise from a region located just outside the black hole's event horizon, the point beyond which nothing can escape.
The research centered on the mid-2009 outburst of a binary system known as H1743-322, located about 28,000 light-years away toward the constellation Scorpius. Discovered by NASA's HEAO-1 satellite in 1977, the system is composed of a normal star and a black hole of modest but unknown masses.
Their orbit around each other is measured in days, which puts them so close together that the black hole pulls a continuous stream of matter from its stellar companion. The flowing gas forms a flattened accretion disk millions of miles across, several times wider than our sun, centered on the black hole. As matter swirls inward, it is compressed and heated to tens of millions of degrees, so hot that it emits X-rays.
Some of the infalling matter becomes re-directed out of the accretion disk as dual, oppositely directed jets. Most of the time, the jets consist of a steady flow of particles. Occasionally, though, they morph into more powerful outflows that hurl massive gas blobs at significant fractions of the speed of light.
Like our videos? Subscribe to NASA's Goddard Shorts HD podcast:
Or find NASA Goddard Space Flight Center on Facebook:
Or find us on Twitter:
Racing outward at about one-quarter the speed of light, these "bullets" of ionized gas are thought to arise from a region located just outside the black hole's event horizon, the point beyond which nothing can escape.
The research centered on the mid-2009 outburst of a binary system known as H1743-322, located about 28,000 light-years away toward the constellation Scorpius. Discovered by NASA's HEAO-1 satellite in 1977, the system is composed of a normal star and a black hole of modest but unknown masses.
Their orbit around each other is measured in days, which puts them so close together that the black hole pulls a continuous stream of matter from its stellar companion. The flowing gas forms a flattened accretion disk millions of miles across, several times wider than our sun, centered on the black hole. As matter swirls inward, it is compressed and heated to tens of millions of degrees, so hot that it emits X-rays.
Some of the infalling matter becomes re-directed out of the accretion disk as dual, oppositely directed jets. Most of the time, the jets consist of a steady flow of particles. Occasionally, though, they morph into more powerful outflows that hurl massive gas blobs at significant fractions of the speed of light.
Like our videos? Subscribe to NASA's Goddard Shorts HD podcast:
Or find NASA Goddard Space Flight Center on Facebook:
Or find us on Twitter:
Комментарии