filmov
tv
Метод Интервалов c Нуля до ЕГЭ №14 за 11 минут 🔥
![preview_player](https://i.ytimg.com/vi/FOwT-Wxh_3w/maxresdefault.jpg)
Показать описание
Метод интервалов пригодится Вам от ОГЭ до самого ЕГЭ! Причем не важно, Профиль Вы сдаете или Базу - и там и там он есть) Так что от него не сбежать!)
Откуда берутся эти плюсики и минусики? Интервалы и петельки? Если знать суть, то все становится прозрачным и очень логичным) Но о сути почему-то многие умалчивают, давайте быстренько разберемся!)
Ответы:
1.(-∞;-3];[2,5;+∞). 2.[0;1]. 3.(-∞;1];[3;+∞). 4.(-19;19). 5.[2;3)
Ответы ЕГЭ:
1. (-∞;0];(1;2);(2;3]. 2.(5;7);(7;10)
Основные шаги метода интервалов:
1. Переносим все в левую часть, справа оставляем только 0.
2. Ищем нули числителя и нули знаменателя(если он есть). Знаменатель не равен нулю - это будет наше ОДЗ в рациональных неравенствах.
3.Отмечаем все полученные корни на прямой, нули знаменателя - ВСЕГДА выколотые, нули числителя закрашиваем в зависимости от строгости неравенства. Наша прямая разбилась на несколько интервалов.
4.Находим кратность корней, нам важна четность! Если корень четной кратности (корень скобки со степенью 2,4,6...) , то рисуем ПЕТЛЮ. Если корень есть и в числители и в знаменателя - сложите (или вычтите) их кратности, нам важна лишь чётность, а не конкретная кратность.
5.Определяем знак всего выражения в самом правом интервале, можете подставить в наше выражение любое большое число из правого интервала (число, которое больше всех корней) и посчитать ТОЛЬКО ЗНАК!
6.Отмечаем знаки на остальных интервалах чередуя их - внутри петли тоже пишем знак ! И выписываем интересующие нас интервалы. Например, если наше выражение должно быть больше 0, то выбираем интервалы, которые отмечены знаком + и не включаем границы. Если неравенство нестрогое - больше или равно 0, то включаем границы, если они не корни знаменателя (не выколоты ОДЗ).
#неравенства #неравенство #егэ #егэматематика #егэматематикапрофиль #огэпоматематике
Откуда берутся эти плюсики и минусики? Интервалы и петельки? Если знать суть, то все становится прозрачным и очень логичным) Но о сути почему-то многие умалчивают, давайте быстренько разберемся!)
Ответы:
1.(-∞;-3];[2,5;+∞). 2.[0;1]. 3.(-∞;1];[3;+∞). 4.(-19;19). 5.[2;3)
Ответы ЕГЭ:
1. (-∞;0];(1;2);(2;3]. 2.(5;7);(7;10)
Основные шаги метода интервалов:
1. Переносим все в левую часть, справа оставляем только 0.
2. Ищем нули числителя и нули знаменателя(если он есть). Знаменатель не равен нулю - это будет наше ОДЗ в рациональных неравенствах.
3.Отмечаем все полученные корни на прямой, нули знаменателя - ВСЕГДА выколотые, нули числителя закрашиваем в зависимости от строгости неравенства. Наша прямая разбилась на несколько интервалов.
4.Находим кратность корней, нам важна четность! Если корень четной кратности (корень скобки со степенью 2,4,6...) , то рисуем ПЕТЛЮ. Если корень есть и в числители и в знаменателя - сложите (или вычтите) их кратности, нам важна лишь чётность, а не конкретная кратность.
5.Определяем знак всего выражения в самом правом интервале, можете подставить в наше выражение любое большое число из правого интервала (число, которое больше всех корней) и посчитать ТОЛЬКО ЗНАК!
6.Отмечаем знаки на остальных интервалах чередуя их - внутри петли тоже пишем знак ! И выписываем интересующие нас интервалы. Например, если наше выражение должно быть больше 0, то выбираем интервалы, которые отмечены знаком + и не включаем границы. Если неравенство нестрогое - больше или равно 0, то включаем границы, если они не корни знаменателя (не выколоты ОДЗ).
#неравенства #неравенство #егэ #егэматематика #егэматематикапрофиль #огэпоматематике
Комментарии