17) how to handle missing data in Excel using Pandas, Python for Beginners

preview_player
Показать описание
Hello, everyone! Welcome back to My Channel Learn Now from your learning partner, In this Video, we will be learning on how to handle missing data in Excel using Pandas. In our previous video we had explained How to remove the null values the data . if you had not watched that video then click on above link and if you are new to our channel then dont forget to subscribe so that you dont miss out your learning
So let Start with this video topic how to handle missing data in Excel using Pandas. We can use the fillna() function to fill in the missing data with a specific value.Now, let's let check our excel where we have the data in some rows with NA, as we can see in Gender Column some data are NA ,now we will use our code to replace our NA value by Zero, so let start with pandas

import pandas as pd

In conclusion, removing null values and handling missing data is important in cleaning up your data for analysis. In the next module, we will discuss How to display the data type. Thank you for watching!
#Python Pandas;#Data Analysis;#Data Manipulation;#Data Cleaning;#Data Wrangling;#Data Transformation;#Data Filtering;#Data Sorting;#Data Aggregation;#Data Visualization;#Data Exploration;#Data Processing;#DataFrame;#Series;#Indexing;#Selecting Data;#Data Structures;#Data Reshaping;#Missing Data;#Data Merging;#Data Joining;#Data Concatenation;#Data Grouping;#Data Pivot;#Data Melting;#Data Stacking;#Data Unstacking;#Data Splitting;#Data Summarization;#Time Series;#DateTime Operations;#Data Analysis Tools;#Data Cleaning Techniques;#Data Transformation Methods;#Data Filtering Methods;#Data Sorting Algorithms;#Data Aggregation Functions;#Data Visualization Tools;#Data Exploration Techniques;#Data Processing Functions;#Data I/O;#Reading Data;#Writing Data;#CSV;#Excel;#SQL;#JSON;#HDF5;#SQL Database;#Data Cleaning Strategies;#Data Imputation;#Data Validation;#Data Normalization;#Data Scaling;#Data Encoding;#Data Categorization;#Data Visualization Libraries;#Matplotlib;#Seaborn;#Plotly;#Bokeh;#Data Analysis Libraries;#NumPy;#Scikit-Learn;#Statsmodels;#Time Series Analysis;#Financial Data Analysis;#Data Aggregation Techniques;#Groupby;#Resampling;#Rolling Statistics;#Window Functions;#MultiIndex;#Data Slicing;#Data Dicing;#Data Filtering Techniques;#Boolean Indexing;#Querying Data;#Data Sorting Methods;#Data Visualization Techniques;#Box Plots;#Histograms;#Scatter Plots;#Bar Charts;#Line Plots;#Heatmaps;#Pair Plots;#Time Series Plots;#Data Exploration Functions;#Summary Statistics;#Correlation Analysis;#Data Sampling;#Data Splitting Techniques;#Cross-Validation;#Train-Test Split;#Data Normalization Methods;#Data Scaling Techniques;#Categorical Data Handling;#Data Encoding Methods;#Data Analysis Best Practices
Рекомендации по теме