How to Speed Up Large CSV & Excel File Processing in Python - Pandas, Parquet, Polars

preview_player
Показать описание
Dealing with slow CSV or Excel file processing in Python? Learn how to load, process, and optimize large datasets FAST using Pandas, Parquet, and Polars! 🚀

🔥 What You’ll Learn:
✅ How to use chunksize to read CSV files in batches
✅ Load only necessary columns with usecols for memory optimization
✅ Reduce file size & speed up processing using Parquet format
✅ Optimize data types with dtype to avoid high RAM usage
✅ Best ways to open large Excel files using openpyxl & Polars

📈 Why This Matters?
✔️ Faster Data Processing 🏎️
✔️ Lower Memory Usage 💾
✔️ No More Crashes! ❌

📺 Subscribe for more Python & Data Science content! [Your YouTube Channel]

💬 Comment below: Which method helped you the most? Let’s discuss! 🚀

🔔 Don’t forget to LIKE, SHARE & SUBSCRIBE for more Python & Data Science tips!

#Python #Pandas #BigData #CSV #Excel #Parquet #DataScience #DataEngineering #MachineLearning #Polars
Рекомендации по теме
join shbcf.ru