An Interesting Trigonometric Equation

preview_player
Показать описание
🤩 Hello everyone, I'm very excited to bring you a new channel (SyberMath Shorts).
Enjoy...and thank you for your support!!! 🧡🥰🎉🥳🧡

If you need to post a picture of your solution or idea:
#algebra #counting #geometry #numbertheory #calculus
via @YouTube @Apple @Desmos @NotabilityApp @googledocs @canva

PLAYLISTS 🎵 :
Рекомендации по теме
Комментарии
Автор

If both sin(x) and cos(x) are not equal to zero, then
sin(x)^5 < sin(x)^2 …..(1)
cos(x)^7<cos(x)^2 …..(2)
adding (1) and (2)
which is contradictory to what is given that sin(x)^2+cos(x)^7=1
Hence either sin(x)=1 or cos(x)=1 that is
x=2*n*pi+pi/2 or x=2*n*pi

xualain
Автор

nice solution but from the equation sin²x(sin³x-1)=cos²x(1-cos⁵x) we can get the system sin³x-1=0 AND cos²x=0 OR 1-cos⁵x=0 AND sin²x=0. This system has the solution as in video.

StaR-uwdc
Автор

Dalle fattorizzazioni si trova sia (1-sinx)=0...(1-cosx)=0...

giuseppemalaguti
Автор

{sin^5+sin^ ➖}+{ x+x ➖ }+{cos^7+cos^7 ➖ }+{x+x ➖ sincosx^12^16 sincosx^2^10^2^14 sincosx^1^1^1^1^2^23^2^2 sincosx^1^1^3^1^2 sincosx^3^2 (sincos x ➖ 3sincosx+2).

RealQinnMalloryu
Автор

...but are there any other complex solutions? :)

jamescollis
Автор

Why go so long ? Why not just sin²x(sin³x-1)=cos²x(1-cos⁵x) ?

michaelyap