filmov
tv
Hadoop HDFS Tutorial | Introduction to HDFS
Показать описание
Register here for FREE ACCESS to our BIG Data & Hadoop Training Platform:
This Hadoop HDFS Tutorial will unravel the complete Hadoop Distributed File System including HDFS Internals, HDFS Architecture, HDFS Commands & HDFS Components - Name Node & Secondary Node. Not only this, even Mapreduce & practical examples of HDFS Applications are showcased in the presentation. At the end, you'll have a strong knowledge regarding Hadoop HDFS Basics.
Session Agenda:
✓ Introduction to BIG Data & Hadoop
✓ HDFS Internals - Name Node & Secondary Node
✓ HDFS Architecture & Components
✓ MapReduce Dataflows
✓ Q&A Session
----------
What is BIG Data & Hadoop?
Big Data refers to the vast amounts of unstructured data generated in todays internet driven world which cannot be tapped, manipulated and utilised via traditional data harness tools. Apache Hadoop is an open-source JAVA based framework which is used to harness & process BIG Data sets. It facilitates distributed parallel processing via cluster nodes to ensure a secure, scaleable & accurate data service solution.
----------
What is HDFS? - Introduction to HDFS
The Hadoop Distributed File System provides high-performance access to data across Hadoop clusters. It forms the crux of the entire Hadoop framework.
----------
What are HDFS Internals?
HDFS Internals are:
1. Name Node – This is the master node from where all data is accessed across various directores. When a data file has to be pulled out & manipulated, it is accessed via the name node.
2. Secondary Node – This is the slave node where all data is stored.
----------
What is MapReduce? - Introduction to MapReduce
MapReduce is a programming framework for distributed processing of large data-sets via commodity computing clusters. It is based on the principal of parallel data processing, wherein data is broken into smaller blocks rather than processed as a single block. This ensures a faster, secure & scalable solution. Mapreduce commands are based in Java.
----------
What are HDFS Applications?
1. Data Mining
2. Document Indexing
3. Business Intelligence
4. Predictive Modelling
5. Hypothesis Testing
----------
Skillspeed is a live e-learning company focusing on high-technology courses. We provide live instructor led training in BIG Data & Hadoop featuring Realtime Projects, 24/7 Lifetime Support & 100% Placement Assistance.
Number: +91-90660-20904
This Hadoop HDFS Tutorial will unravel the complete Hadoop Distributed File System including HDFS Internals, HDFS Architecture, HDFS Commands & HDFS Components - Name Node & Secondary Node. Not only this, even Mapreduce & practical examples of HDFS Applications are showcased in the presentation. At the end, you'll have a strong knowledge regarding Hadoop HDFS Basics.
Session Agenda:
✓ Introduction to BIG Data & Hadoop
✓ HDFS Internals - Name Node & Secondary Node
✓ HDFS Architecture & Components
✓ MapReduce Dataflows
✓ Q&A Session
----------
What is BIG Data & Hadoop?
Big Data refers to the vast amounts of unstructured data generated in todays internet driven world which cannot be tapped, manipulated and utilised via traditional data harness tools. Apache Hadoop is an open-source JAVA based framework which is used to harness & process BIG Data sets. It facilitates distributed parallel processing via cluster nodes to ensure a secure, scaleable & accurate data service solution.
----------
What is HDFS? - Introduction to HDFS
The Hadoop Distributed File System provides high-performance access to data across Hadoop clusters. It forms the crux of the entire Hadoop framework.
----------
What are HDFS Internals?
HDFS Internals are:
1. Name Node – This is the master node from where all data is accessed across various directores. When a data file has to be pulled out & manipulated, it is accessed via the name node.
2. Secondary Node – This is the slave node where all data is stored.
----------
What is MapReduce? - Introduction to MapReduce
MapReduce is a programming framework for distributed processing of large data-sets via commodity computing clusters. It is based on the principal of parallel data processing, wherein data is broken into smaller blocks rather than processed as a single block. This ensures a faster, secure & scalable solution. Mapreduce commands are based in Java.
----------
What are HDFS Applications?
1. Data Mining
2. Document Indexing
3. Business Intelligence
4. Predictive Modelling
5. Hypothesis Testing
----------
Skillspeed is a live e-learning company focusing on high-technology courses. We provide live instructor led training in BIG Data & Hadoop featuring Realtime Projects, 24/7 Lifetime Support & 100% Placement Assistance.
Number: +91-90660-20904