Diophantine Equation | Number Theory | You should be able to solve this

preview_player
Показать описание
Diophantine Equation | Number Theory | You should be able to solve this

Join this channel to get access to perks:

MEMBERS OF THIS CHANNEL
••••••••••••••••••••••••••••••••••••••••
Mr. Gnome
Sambasivam Sathyamoorthy
ஆத்தங்கரை சண்முகம்
Εκπαιδευτήρια Καντά
AR Knowledge
堤修一
Sidnei Medeiros Vicente
Рекомендации по теме
Комментарии
Автор

After add the two equation
4x+3z= 15
We can take mod 3 both side
4x=0( mod 3)
X=0 ( mod 3)
X= 3a and a is an integer
3a>=0 a>=0

Sub x=3a in 4x+3z =15
We get z=5-4a>=0 a<=5/4
0<=a<=5/4
a is an integer a=0 or 1
If a= 0, x=0 and z=5
If a=1, x=3, z=1

And we can find y by subbing the value in any of two original equation

skwbusaidi
Автор

Integers (x, y, z) (0, 0, 5) (3, 1, 3)

alinayfeh
Автор

Request Calculus and Linear Algebra problems for College Students in Engineering and Science.

wira
Автор

In this problem, it may be easier to double the second equation and subtract to not just cancel the z's, but the constant term as well. This yields 5x=3y. So x is a multiple of 3 and y is a multiple of 5.

dujas
Автор

2:51 why can't decimal numbers be integers?

wira