filmov
tv
Weil conjectures 6: etale cohomology of a curve
Показать описание
We give an overview of how to calculate the etale cohomology of a nonsinguar projective curve over an algebraically closed field with coefficients Z/nZ with n invertible. We simply assume a lot of properties of etale cohomology without proving (or even defining) them.
Weil conjectures 6: etale cohomology of a curve
Etale Cohomology and the Weil conjectures (Daniel Litt) 6-31
Etale Cohomology and the Weil Conjectures
The Weil Conjectures
Etale Cohomology and the Weil conjectures (Daniel Litt) 31-31
Weil conjectures 7: What is an etale morphism?
Etale Cohomology and the Weil conjectures (Daniel Litt) 25-31
Etale Cohomology and the Weil conjectures (Daniel Litt) 11-31
Etale Cohomology and the Weil conjectures (Daniel Litt) 28-31
Étale Cohomology and the Weil conjectures - 8/20/2020
Etale Cohomology and the Weil conjectures (Daniel Litt) 26-31
Etale Cohomology and the Weil conjectures (Daniel Litt) 17-31
Etale Cohomology and the Weil conjectures (Daniel Litt) 9-31
Etale Cohomology and the Weil conjectures (Daniel Litt) 27-31
Weil conjectures. (19/07/2023)
Alexey Beshenov | Weil-étale cohomology of arithmetic schemes
Weil conjectures 5: Lefschetz trace formula
The Weil Conjectures and Topos Theory
Weil conjectures 4 Fermat hypersurfaces
Weil-étale cohomology for n 0. (Alexey Beshenov)
What is...cohomology?
Dolbeault vs Cech
Wieslawa Niziol: Duality in p-adic pro-etale cohomology of analytic curves
Topological 6-Functor Formalism - Asaf Horev
Комментарии