filmov
tv
Lambda (λ) calculus evaluation rules (δ, β, α, η conversion/reduction)
Показать описание
In this video we discuss the way in which you can evaluate a lambda calculus program/expression using a number of rules (delta rules, beta reduction, alpha conversion and eta conversion).
Contents:
00:30 - Video Contents Summary
00:52 - Bound vs. free variables
01:52 - Delta (δ) rules
02:31 - Beta (β) reduction
11:12 - Alpha (α) conversion
14:19 - Eta (η) conversion
Contents:
00:30 - Video Contents Summary
00:52 - Bound vs. free variables
01:52 - Delta (δ) rules
02:31 - Beta (β) reduction
11:12 - Alpha (α) conversion
14:19 - Eta (η) conversion
Lambda (λ) calculus evaluation rules (δ, β, α, η conversion/reduction)
Lambda (λ) Calculus Primer
Intro to Lambda Calculus: Syntax, evaluation, terminology (compared to Haskell, Python, JavaScript)
Let expressions in Lambda Calculus: Syntax and evaluation rules
Lambda Calculus For Dummies: What is a lambda expression
Lambda Calculus: The foundation of functional programming, and the simplest programming language
What is Lambda Calculus? (ft. Church Encodings)
What is the lambda (λ) calculus?
Lambda calculus normal form, and the Church-Rosser theorems
Lambda calculus in 5 minutes
Lambda Calculus Syntax
Semantics: Lambda Calculus and Types
Lambda Calculus Evaluation
Functions by Subsitution (Lambda-Calculus Part I)
L17: Lambda Calculus Reductions and Substitution
Free and Bound Variables in Lambda Calculus: What are they and how can we calculate them?
Lambda Calculus!
David Broman - The Lambda Calculus
Reducing Lambda Expressions
β-reduction and normal form
CS442 Video 2.1: Lambda calculus booleans
PL Class: Lambda calculus
L18: Reduction Strategies
The lambda calculus and basic type checking
Комментарии