filmov
tv
#2 Master NumPy Arrays: Create, Manage, and Explore Data Types#python3 #learnpython

Показать описание
#numpy #numpytutorial #pythonforbeginners #numpyintelugu #pythontutorialtelugu #numpybasics #pythonprogramming #pythonnumpy #telugupythontutorial #PythonCodingInTelugu #NumPyPart5 #FinalPartNumPy #pythonlearning #numpyforbeginners #datasciencewithpython
====================================================
========================================================
In this video, we'll explore the basics of NumPy, a powerful library for numerical computing in Python. We'll cover how to create arrays, use placeholders, work with different data types, and understand key NumPy attributes. Perfect for beginners!
### Topics Covered:
### 1. **Creating a NumPy Array**
A NumPy array is a powerful N-dimensional array object which is useful for scientific computing.
**Example:**
```python
import numpy as np
# Creating a 1D array
print("1D Array:", array_1d)
# Creating a 2D array
print("2D Array:")
print(array_2d)
```
### 2. **Placeholders in NumPy**
Placeholders are used to create arrays with uninitialized values, serving as empty containers for future data.
**Examples:**
```python
# Creating an array with uninitialized values
print("Empty Array:")
print(empty_array)
# Creating an array filled with zeros
print("Zeros Array:")
print(zeros_array)
# Creating an array filled with ones
print("Ones Array:")
print(ones_array)
```
### 3. **Data Types in NumPy**
NumPy supports various data types, including integers, floats, strings, booleans, objects, complex numbers, and Unicode.
**Examples:**
```python
# Integer array
print("Integer Array:", int_array)
# Float array
print("Float Array:", float_array)
# String array
print("String Array:", str_array)
# Boolean array
print("Boolean Array:", bool_array)
# Complex number array
print("Complex Array:", complex_array)
# Unicode array
print("Unicode Array:", unicode_array)
```
### 4. **NumPy Attributes**
NumPy arrays have several attributes that provide useful information about the array.
**Examples:**
```python
# Creating a sample array
# Shape of the array
# Number of dimensions
# Size of the array (number of elements)
# Data type of the array elements
```
====================================================
========================================================
In this video, we'll explore the basics of NumPy, a powerful library for numerical computing in Python. We'll cover how to create arrays, use placeholders, work with different data types, and understand key NumPy attributes. Perfect for beginners!
### Topics Covered:
### 1. **Creating a NumPy Array**
A NumPy array is a powerful N-dimensional array object which is useful for scientific computing.
**Example:**
```python
import numpy as np
# Creating a 1D array
print("1D Array:", array_1d)
# Creating a 2D array
print("2D Array:")
print(array_2d)
```
### 2. **Placeholders in NumPy**
Placeholders are used to create arrays with uninitialized values, serving as empty containers for future data.
**Examples:**
```python
# Creating an array with uninitialized values
print("Empty Array:")
print(empty_array)
# Creating an array filled with zeros
print("Zeros Array:")
print(zeros_array)
# Creating an array filled with ones
print("Ones Array:")
print(ones_array)
```
### 3. **Data Types in NumPy**
NumPy supports various data types, including integers, floats, strings, booleans, objects, complex numbers, and Unicode.
**Examples:**
```python
# Integer array
print("Integer Array:", int_array)
# Float array
print("Float Array:", float_array)
# String array
print("String Array:", str_array)
# Boolean array
print("Boolean Array:", bool_array)
# Complex number array
print("Complex Array:", complex_array)
# Unicode array
print("Unicode Array:", unicode_array)
```
### 4. **NumPy Attributes**
NumPy arrays have several attributes that provide useful information about the array.
**Examples:**
```python
# Creating a sample array
# Shape of the array
# Number of dimensions
# Size of the array (number of elements)
# Data type of the array elements
```