filmov
tv
Newton's Identity, Lesson 4.2: An AIME Problem, cubic sums
![preview_player](https://i.ytimg.com/vi/Y65ciQriP_o/maxresdefault.jpg)
Показать описание
2008 AIME II, Problem 7
Let $r$, $s$, and $t$ be the three roots of the equation\[8x^3 + 1001x + 2008 = 0.\]Find $(r + s)^3 + (s + t)^3 + (t + r)^3$.
Let $r$, $s$, and $t$ be the three roots of the equation\[8x^3 + 1001x + 2008 = 0.\]Find $(r + s)^3 + (s + t)^3 + (t + r)^3$.